Publications by authors named "Rikke S Moller"

The chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1-RUNX1T1 fusion protein.

View Article and Find Full Text PDF

We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 x 10(-8)).

View Article and Find Full Text PDF

We have identified and characterized two unrelated patients with prenatal onset of microcephaly, intrauterine growth retardation, feeding problems, developmental delay, and febrile seizures/epilepsy who both carry a de novo balanced translocation that truncates the DYRK1A gene at chromosome 21q22.2. DYRK1A belongs to the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family, which is highly conserved throughout evolution.

View Article and Find Full Text PDF

In a patient with severe myoclonic epilepsy of infancy (SMEI), we identified a de novo balanced translocation, t(2;5)(q24.3,q34). The breakpoint on chromosome 2q24.

View Article and Find Full Text PDF

Most studies of genomic disorders have focused on patients with cognitive disability and/or peripheral nervous system defects. In an effort to broaden the phenotypic spectrum of this disease model, we assessed 155 autopsy samples from fetuses with well-defined developmental pathologies in regions predisposed to recurrent rearrangement, by array-based comparative genomic hybridization. We found that 6% of fetal material showed evidence of microdeletion or microduplication, including three independent events that likely resulted from unequal crossing-over between segmental duplications.

View Article and Find Full Text PDF

Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available.

View Article and Find Full Text PDF