Background: Elastin is a signature protein of the arteries and lungs, thus it was hypothesized that elastin is subject to enzymatic degradation during cardiovascular and pulmonary diseases. The aim was to investigate if different fragments of the same protein entail different information associated to two different diseases and if these fragments have the potential of being diagnostic biomarkers.
Methods: Monoclonal antibodies were raised against an identified fragment (the ELM-2 neoepitope) generated at the amino acid position '552 in elastin by matrix metalloproteinase (MMP) -9/-12.
Background: Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases.
View Article and Find Full Text PDFBiomark Insights
March 2011
Background And Aim: The current study utilized a carbon tetrachloride (CCl(4))-induced liver fibrosis model to measure levels of the MMP9-mediated collagen type III degradation fragment CO3-610 (site of cleavage: KNGETGPQGP), during disease progression and regression, and to investigate a potential prognostic role of the biomarker.
Materials And Methods: 72 female Sprague-Dawley rats aged 6 months old were injected with CCl(4) twice a week over different periods of time to induce varying degrees of liver fibrosis. After 4, 6 and 8 weeks of treatment, administration of CCl(4) was stopped.
Background: The current study utilized a Bleomycin-induced model of skin fibrosis to investigate the neo-epitope CO3-610 (KNGETGPQGP), a fragment of collagen III released during matrix metalloproteinase-9 (MMP9) degradation of the protein, we have previously described as a novel biomarker for liver fibrosis. The aim was to investigate CO3-610 levels in another well characterised model of fibrosis, to better describe the biomarker in relation to additional fibrotic pathologies.
Methods: Skin fibrosis was induced by daily injections of Bleomycin to a total of 52 female C3 H mice, while control mice (n = 28) were treated with phosphate buffered saline (PBS), for 2, 4, 6 or 8 weeks.