Publications by authors named "Rikard Blunck"

Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Nociceptor neurons help the body detect environmental dangers, but in allergy cases, they can worsen symptoms like pain and coughing by promoting inflammation and mucus imbalance.
  • The study identified a type of vagal nociceptor neuron that specifically targets airways and undergoes significant changes during allergic reactions, such as increased expression of the NPY receptor influenced by cytokines like IL-1β and IL-13.
  • Findings suggest that blocking the NPY receptor in nociceptors leads to higher inflammation in asthmatic mice, while reducing nociceptor activity through chemical means can lower airway inflammation, indicating a complex balance in their roles during allergic inflammation.
View Article and Find Full Text PDF

Migraines are a common type of headache affecting around 15% of the population. The signalling pathways leading to migraines have not been fully understood, but neuronal voltage-gated ion channels, such as KCNG4, have been linked to this pathology. KCNG4 (Kv6.

View Article and Find Full Text PDF

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons.

View Article and Find Full Text PDF

Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers found a new mutation in the Kv1.1 gene linked to neurological issues like epilepsy and ataxia in a young girl, and noted that treatments with standard medications were initially ineffective.
  • - The study aimed to understand how this specific mutation affects the function of the Kv1.1 channel by comparing it to the normal version, revealing that the mutation causes reduced potassium current and altered function.
  • - Findings suggest that mutations in the Kv1.1 channel are associated with severe epilepsy, and highlight the effectiveness of certain medications, like acetazolamide, in treating conditions related to this channel's dysfunction.
View Article and Find Full Text PDF

Oligomerization and complex formation play a key role for many membrane proteins and has been described to influence ion channel function in both neurons and the heart. In this study, we observed clustering of single KcsA channels in planar lipid bilayer using single molecule fluorescence, while simultaneously measuring single channel currents. Clustering coincided with cooperative opening of KcsA.

View Article and Find Full Text PDF

Kv1.2 channels, encoded by the gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia.

View Article and Find Full Text PDF

Background: Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20-30% of BrS cases and is considered clinically relevant.

View Article and Find Full Text PDF

Most membrane proteins, and ion channels in particular, assemble to multimeric biological complexes. This starts with the quarternary structure and continues with the recruitment of auxiliary subunits and oligomerization or clustering of the complexes. While the quarternary structure is best determined by atomic-scale structures, stoichiometry of heteromers and dynamic changes in the assembly cannot necessarily be investigated with structural methods.

View Article and Find Full Text PDF

The gene encodes the α subunit of the voltage-gated Kv1.1 potassium channel that critically regulates neuronal excitability in the central and peripheral nervous systems. Mutations in have been classically associated with episodic ataxia type 1 (EA1), a movement disorder triggered by physical and emotional stress.

View Article and Find Full Text PDF

gene knockout causes hypertension in castrated mice. EPHB6 controls catecholamine secretion by adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent way. Nicotinic acetylcholine receptor (nAChR) is a ligand-gated Ca/Na channel, and its opening is the first signaling event leading to catecholamine secretion by AGCCs.

View Article and Find Full Text PDF

(1) Background: Episodic ataxia type 1 is caused by mutations in the gene encoding for the voltage-gated potassium channel Kv1.1. There have been many mutations in Kv1.

View Article and Find Full Text PDF

The electrically silent (KvS) members of the voltage-gated potassium (Kv) subfamilies Kv5, Kv6, Kv8, and Kv9 selectively modulate Kv2 subunits by forming heterotetrameric Kv2/KvS channels. Based on the reported 3:1 stoichiometry of Kv2.1/Kv9.

View Article and Find Full Text PDF

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain.

View Article and Find Full Text PDF

The four hyperpolarization-activated cylic-nucleotide gated (HCN) channel isoforms and their auxiliary subunit KCNE2 are important in the regulation of peripheral and central neuronal firing and the heartbeat. Disruption of their normal function has been implicated in cardiac arrhythmias, peripheral pain, and epilepsy. However, molecular details of the HCN-KCNE2 complexes are unknown.

View Article and Find Full Text PDF

The S4-S5 linker physically links voltage sensor and pore domain in voltage-gated ion channels and is essential for electromechanical coupling between both domains. Little dynamic information is available on the movement of the cytosolic S4-S5 linker due to lack of a direct electrical or optical readout. To understand the movements of the gating machinery during activation and inactivation, we incorporated fluorescent unnatural amino acids at four positions along the linker of the Shaker K channel.

View Article and Find Full Text PDF

The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells.

View Article and Find Full Text PDF

Voltage-Clamp Fluorometry (VCF) has been the technique of choice to investigate the structure and function of electrogenic membrane proteins where real-time measurements of fluorescence and currents simultaneously report on local rearrangements and global function, respectively. While high-resolution structural techniques such as cryo-electron microscopy or X-ray crystallography provide static images of the proteins of interest, VCF provides dynamic structural data that allows us to link the structural rearrangements (fluorescence) to dynamic functional data (electrophysiology). Until recently, the thiol-reactive chemistry used for site-directed fluorescent labeling of the proteins restricted the scope of the approach because all accessible cysteines, including endogenous ones, will be labeled.

View Article and Find Full Text PDF

Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus.

View Article and Find Full Text PDF

Anthrax toxin comprises three soluble proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA must be cleaved by host proteases before it oligomerizes and forms a prepore, to which LF and EF bind. After endocytosis of this tripartite complex, the prepore transforms into a narrow transmembrane pore that delivers unfolded LF and EF into the host cytosol.

View Article and Find Full Text PDF

Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR).

View Article and Find Full Text PDF

Unlabelled: The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex.

View Article and Find Full Text PDF

With the rapid development of a continuously growing selection of unnatural amino acids (UAAs), UAA insertion becomes increasingly popular for investigating proteins. However, it can prove problematic to ensure the homogeneity of the expressed proteins, when homogeneity is compromised by "leak expression". Here, we show that leak expression may be mediated by reinitiation and can result in unwanted proteins when stop codons for UAA insertion are mutated into the N-terminus of proteins.

View Article and Find Full Text PDF