Publications by authors named "Rika Taslim"

Background: Porous carbon electrode (PCE) is identified as a highly suitable electrode material for commercial application due to its production process, which is characterized by simplicity, cost-effectiveness and environmental friendliness. PCE was synthesized using torch ginger (Etlingera elatior (Jack) R.M.

View Article and Find Full Text PDF

Biomass-based activated carbon has great potential in the use of its versatile 3D porous structures as an excellent electrode material in presenting high conductivity, large porosity, and outstanding stability for electrochemical energy storage devices. In this study, the electrode material develops through a novel consolidated carbon disc binder-free design, which was derived from leaves (MOLs) for electrochemical double-layer capacitor applications. The carbon discs are prepared in a series of treatments of precarbonized, chemical impregnation of zinc chloride, integrated pyrolysis of N carbonization, and CO physical activation.

View Article and Find Full Text PDF

A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively.

View Article and Find Full Text PDF