Publications by authors named "Rika Kitamura"

This study aimed to investigate amylose-lipid complex (ALC) formation and starch digestibility in cooked rice starches (CRSs) with the addition of 0, 5, and 10 % emulsified formulation (EMF). The addition of EMF did not affect the content of non-starch lipids but tended to increase the content of total lipids and starch lipids. The absorption rate of 995 cm/1022 cm of CRSs increased with the addition of EMF, while that of 1047 cm/1022 cm remained unchanged regardless of the addition of EMF.

View Article and Find Full Text PDF

To evaluate the effects of structural characteristics on amylose-lipid complex (ALC) formation and the starch digestibility of cooked rice grains with the addition of 0, 5, 10, and 20 % emulsification formulation (EMF), both cooked rice (CR) grains with intact structural characteristics and CR slurries with their structural characteristics destroyed were examined. When EMF was added, the surface firmness, adhesiveness and adhesion of the CR grain changed. Depressions associated with ALC formation were observed on the surface of CR grains.

View Article and Find Full Text PDF

To assess the effect of rice bran oil emulsified formulation (EMF) on cooked rice, a single-arm open clinical trial and in vitro testing for digestion and glycemic response were performed. Fifteen Japanese men consumed 200 g of packed rice, cooked with or without EMF. Blood samples were collected 0, 30, 60, and 120 min post-consumption and analyzed for glucose, insulin, and triglyceride levels.

View Article and Find Full Text PDF

Changes in the subcellular localisation of chloroplasts help optimise photosynthetic activity under different environmental conditions. In many plants, this movement is mediated by the blue-light photoreceptor phototropin. A model organism with simple phototropin signalling that allows clear observation of chloroplasts would facilitate the study of chloroplast relocation movement.

View Article and Find Full Text PDF

Malodorous emissions are a crucial and inevitable issue during the decomposition of biological waste and contain a high concentration of ammonia. Biofiltration technology is a feasible, low-cost, energy-saving method that reduces and eliminates malodors without environmental impact. In the present study, we evaluated the effectiveness of compost from cattle manure and food waste as deodorizing media based on their removal of ammonia and the expression of ammonia-oxidizing genes, and identified the bacterial and archaeal communities in these media.

View Article and Find Full Text PDF

Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost.

View Article and Find Full Text PDF

We describe the isolation of a protein, SWAP-70-like adapter of T cells (SLAT), which is expressed at high levels in thymocytes and differentiated Th2 cells. SLAT expression was upregulated in differentiating Th2 cells and downregulated in Th1 cells. Ectopic SLAT expression exerted positive or negative effects on IL-4 versus IFNgamma induction, respectively.

View Article and Find Full Text PDF