Personalized medicine in psychiatry is in need of biomarkers that resemble central nervous system function at the level of neuronal activity. Electroencephalography (EEG) during sleep or resting-state conditions and event-related potentials (ERPs) have not only been used to discriminate patients from healthy subjects, but also for the prediction of treatment outcome in various psychiatric diseases, yielding information about tailored therapy approaches for an individual. This review focuses on baseline EEG markers for two psychiatric conditions, namely major depressive disorder and attention deficit hyperactivity disorder.
View Article and Find Full Text PDFIt is essential to improve antidepressant treatment of major depressive disorder (MDD) and one way this could be achieved is by reducing the number of treatment steps by employing biomarkers that can predict treatment outcome. This study investigated differences between MDD patients and healthy controls in the P3 and N1 component from the event-related potential (ERP) generated in a standard two-tone oddball paradigm. Furthermore, the P3 and N1 are investigated as predictors for treatment outcome to three different antidepressants.
View Article and Find Full Text PDFIn the present study the frontal and parietal P300, elicited in an auditory oddball paradigm were investigated in a large sample of healthy participants (N = 1572), aged 6-87. According to the concepts of the compensation-related utilization of neural circuits hypothesis (CRUNCH) it was hypothesized that the developmental trajectories of the frontal P300 would reach a maximum in amplitude at an older age than the amplitude of the parietal P300 amplitude. In addition, the amplitude of the frontal P300 was expected to increase with aging in adulthood in contrast to a decline in amplitude of the parietal P300 amplitude.
View Article and Find Full Text PDFBackground: The P300 component of the event-related potential is a large positive waveform that can be extracted from the ongoing electroencephalogram using a two-stimuli oddball paradigm, and has been associated with cognitive information processing (e.g. memory, attention, executive function).
View Article and Find Full Text PDF