Zn(ii)-based anticancer drugs can be suitable alternatives to conventional Pt(ii)-based drugs because of the unique chemical properties of Zn(ii) and low toxicity. In this study, a new hexadentate and heteroleptic Zn(ii) complex ([Zn(bpy)(OAc)], 1) was prepared with a conventional ,-donor ligand (2,2'-bipyridine) and a leaving group (OAc) and characterized ESI-MS, UV-Vis, and FT-IR spectroscopy. Kinetic and mechanistic investigations of 1 were performed using two biologically relevant ligands (dl-penicillamine and l-cysteine) to understand its selectivity and reactivity.
View Article and Find Full Text PDFDespite the remarkable Cu(II) sorption biochar potential, it is challenging to desorb them for repeated biochar usage. The present study aims to develop engineered biochar by polarizing Ascophyllum nodosum (seaweed) biomass and magnetizing it with FeO nanoparticles coating. SEM, EDX, XRD, BET, and FT-IR helped to characterize engineered biochar.
View Article and Find Full Text PDFThe greener chemical and enzymatic pretreatments for lignocellulosic biomasses are portraying a crucial role owing to their recalcitrant nature. Traditional pretreatments lead to partial degradation of lignin and hemicellulose moieties from the pretreated biomass. But it still restricts the enzyme accessibility for the digestibility towards the celluloses and the interaction of lignin-enzymes, nonproductively.
View Article and Find Full Text PDFTannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth.
View Article and Find Full Text PDFEnviron Pollut
July 2023
Synthesis and characterization of highly active cross-linked laccase aggregates (CLLAs) were performed and evaluated for removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater. Laccase from Tramates versicolor MTCC 138 was insolubilized as CLLAs via precipitation with 70% ammonium sulphate and simultaneous cross-linking with 5 mM glutaraldehyde to obtain activity recovery of 89.1%.
View Article and Find Full Text PDFLignocellulose biomass during pretreatment releases various compounds, among them the most important is reducing sugars, which can be utilized for the production of biofuels and some other products. Thereby, innovative greener pretreatment techniques for lignocellulosic materials have been considered to open a new door in the aspects of digestibility of the rigid carbohydrate-lignin matrix to reduce the particle size and remove hemicellulose/lignin contents to successfully yield valid bioproducts. This article reviews about the composition of lignocelluloses and emphasizes various green pretreatments viz novel green solvent-based IL and DES steam explosion, supercritical carbon dioxide explosion (Sc-CO2) and co-solvent enhanced lignocellulosic fractionation (CELF) along with suitable mechanistic pathway of LCB pretreatment process.
View Article and Find Full Text PDFThis review paper emphasised on the origin of hexavalent chromium toxicity in tannery wastewater and its remediation using novel Microbial Fuel Cell (MFC) technology, including electroactive bacteria, which are known as exoelectrogens, to simultaneously treat wastewater and its action in the production of bioenergy and the mechanism of Cr reduction. Also, there are various parameters like electrode, pH, mode of operation, time of operation, and type of exchange membrane used for promising results shown in enhancing MFC production and remediation of Cr. Destructive anthropological activities, such as leather making and electroplating industries are key sources of hexavalent chromium contamination in aquatic repositories.
View Article and Find Full Text PDFThis review mainly determines novel and advance physical, chemical, physico-chemical, microbiological and nanotechnology-based pretreatment techniques in lignocellulosic biomass pretreatment for bio-H2 production. Further, aim of this review is to gain the knowledge on the lignocellulosic biomass pretreatment and its priority on the efficacy of bio-H2 and positive findings. The influence of various pretreatment techniques on the structure of lignocellulosic biomass have presented with the pros and cons, especially about the cellulose digestibility and the interference by generation of inhibitory compounds in the bio-enzymatic technique as such compounds is toxic.
View Article and Find Full Text PDFBiocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance.
View Article and Find Full Text PDFEnviron Res
September 2022
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells.
View Article and Find Full Text PDFretracts the article "Advantage of Species Diversification to Facilitate Sustainable Development of Aquaculture Sector" cited above [...
View Article and Find Full Text PDFIntensified agrochemical-based monoculture systems worldwide are under adoption to meet the challenge of human population growth and the ever-growing global demand for food. However, this path has been opposed and criticized because it involves overexploitation of land, monoculture of few species, excessive input of agrochemicals, and adverse impacts on human health and the environment. The wide diversity among polyculture systems practiced across the globe has created confusion over the priority of a single strategy towards sustainable aquaculture development and safer products.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies.
View Article and Find Full Text PDFPolymers (Basel)
February 2022
This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS-Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS-Ag NPs were analyzed via UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy.
View Article and Find Full Text PDFIn nanoscience, the "green" synthesis approach has received great interest as an eco-friendly and sustainable method for the fabrication of a wide array of nanoparticles. The present study accounts for an expeditious technique for the synthesis of silver nanoparticles (AgNPs) utilizing fruit waste grape pomace extracted tannin. Grape pomace tannin (Ta) involved in the reduction and capping of AgNPs and leads to the formation of stable Ta-AgNPs.
View Article and Find Full Text PDFGlobal energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.
View Article and Find Full Text PDFChemosphere
February 2022
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers.
View Article and Find Full Text PDFIn the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds.
View Article and Find Full Text PDFWith the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants.
View Article and Find Full Text PDFWastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it.
View Article and Find Full Text PDFIn present work, a LiP enzyme producing bacterium was isolated form textile wastewater and sludge sample and identified as Bacillus albus by 16S rRNA gene sequencing analysis. This bacterium decolorized 99.27 % MB dye and removed 83.
View Article and Find Full Text PDFThe worldwide consumption of eggs is very high, leading to about 250,000 tons of eggshell membrane (ESM) waste annually. The present research thus investigated the potential use of ESM as an inexpensive and abundant adsorbent for Reactive Red 120 (RR120) in aqueous solutions, a widespread hydrophilic azo dye used in the textile industry. The chemical structure and morphology of ESM were characterized using various spectroscopic methods, including scanning electron microscopy, Fourier transform infrared spectroscopy, and elemental analysis.
View Article and Find Full Text PDFThe utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (FeO), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses.
View Article and Find Full Text PDF