Objectives: To determine the prevalence, trends, and potential nosocomial transmission events of the hidden reservoir of rectal carriage of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E).
Methods: From 2013 to 2022, yearly point prevalence surveys were conducted in a large Dutch teaching hospital. On the day of the survey, all admitted patients were screened for ESBL-E rectal carriage using peri-anal swabs and a consistent and sensitive selective culturing method.
Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked.
View Article and Find Full Text PDFAntimicrob Resist Infect Control
November 2023
Background: We aimed to estimate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence and describe its determinants and associated symptoms among unvaccinated healthcare workers (HCWs) after the first wave of the pandemic.
Methods: HCWs from 13 Dutch hospitals were screened for antibodies against the spike protein of SARS-CoV-2 in June-July 2020 and after three months. Participants completed a retrospective questionnaire on determinants for occupational and community exposure to SARS-CoV-2 and symptoms suggestive of COVID-19 experienced since January 2020.
During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species.
View Article and Find Full Text PDFMicrovasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology.
View Article and Find Full Text PDFSkeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2020
Mimicking endochondral bone formation is a promising strategy for bone regeneration. To become a successful therapy, the cell source is a crucial translational aspect. Typically, autologous cells are used.
View Article and Find Full Text PDFBackground: 10 days after the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands (on Feb 27, 2020), 55 (4%) of 1497 health-care workers in nine hospitals located in the south of the Netherlands had tested positive for SARS-CoV-2 RNA. We aimed to gain insight in possible sources of infection in health-care workers.
Methods: We did a cross-sectional study at three of the nine hospitals located in the south of the Netherlands.
Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model.
View Article and Find Full Text PDFThe clinical translation of three-dimensionally printed bioceramic scaffolds with tailored architectures holds great promise toward the regeneration of bone to heal critical-size defects. Herein, the long-term in vivo performance of printed hydrogel-ceramic composites made of methacrylated-oligocaprolactone-poloxamer and low-temperature self-setting calcium-phosphates is assessed in a large animal model. Scaffolds printed with different internal architectures, displaying either a designed porosity gradient or a constant pore distribution, are implanted in equine tuber coxae critical size defects.
View Article and Find Full Text PDFLocal prophylaxis with antibiotic-loaded bone cement is a successful method to prevent post-operative infections in patients receiving orthopaedic implants. No comparable method is available for uncemented implants. Therefore, a hydrogel consisting of hyaluronic and polylactic acids was evaluated in a rabbit model for delivery of antimicrobial agents to prevent post-operative infections.
View Article and Find Full Text PDFObjective: To report the long-term outcome of nine dogs treated for caudal cervical spondylomyelopathy (CCSM) with surgical spinal fusion.
Study Design: Short case series.
Animals: Nine large-breed dogs.
Since Galileo's days the effect of size on the anatomical characteristics of the structural elements of the body has been a subject of interest. However, the effects of scaling at tissue level have received little interest and virtually no data exist on the subject with respect to the osteochondral unit in the joint, despite this being one of the most lesion-prone and clinically relevant parts of the musculoskeletal system. Imaging techniques, including Fourier transform infrared imaging, polarized light microscopy and micro computed tomography, were combined to study the response to increasing body mass of the osteochondral unit.
View Article and Find Full Text PDFRegenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes.
View Article and Find Full Text PDFObjectives: We determined the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage upon hospital admission, among patients who were screened preoperatively for nasal S. aureus carriage between 2010 and 2017. We also aimed to evaluate the prevalence of MRSA carriers without the standard risk factors.
View Article and Find Full Text PDFHydrogels can facilitate nucleus pulposus (NP) regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated NP have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentiation in an attempt to provide comparators for future studies.
View Article and Find Full Text PDFIn several countries, including the Netherlands, a search and destroy policy is part of the standard of care. Due to this policy and the restrictive use of antibiotics, the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the Netherlands - carrier state and infections - is among the lowest in the world. In the Netherlands, healthcare workers who are MRSA carriers are not allowed to perform work involving direct patient care.
View Article and Find Full Text PDFUnlabelled: Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown.
View Article and Find Full Text PDFThe mechanical properties of articular cartilage depend on the quality of its matrix, which consists of collagens and glycosaminoglycans (GAGs). The accumulation of advanced glycation end products (AGEs) can greatly affect the mechanics of cartilage. In the current study, we simulated the accumulation of AGEs by using L-threose to cross-link collagen molecules in the cartilage matrix (in vitro).
View Article and Find Full Text PDFThe implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process.
View Article and Find Full Text PDFEvidence is growing for the existence of an obesity-related phenotype of osteoarthritis in which low-grade inflammation and a disturbed metabolic profile play a role. The contribution of an obesity-induced metabolic dysbalance to the progression of the features of osteoarthritis upon mechanically induced cartilage damage was studied in a rat in vivo model. Forty Wistar rats were randomly allocated 1:1 to a standard diet or a high-fat diet.
View Article and Find Full Text PDFObjective: To report on the experiences with the use of commercial and autologous fibrin glue (AFG) and of an alternative method based on a 3D-printed polycaprolactone (PCL) anchor for the fixation of hydrogel-based scaffolds in an equine model for cartilage repair.
Methods: In a first study, three different hydrogel-based materials were orthotopically implanted in nine horses for 1-4 weeks in 6 mm diameter full-thickness cartilage defects in the medial femoral trochlear ridge and fixated with commercially available fibrin glue (CFG). One defect was filled with CFG only as a control.
Unlabelled: Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration.
View Article and Find Full Text PDF