Publications by authors named "Riina Tehver"

Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94.

View Article and Find Full Text PDF

Proteolysis is essential for the control of metabolic pathways and the cell cycle. Bacterial caseinolytic proteases (Clp) use peptidase components, such as ClpP, to degrade defective substrate proteins and to regulate cellular levels of stress-response proteins. To ensure selective degradation, access to the proteolytic chamber of the double-ring ClpP tetradecamer is controlled by a critical gating mechanism of the two axial pores.

View Article and Find Full Text PDF
Article Synopsis
  • Kinesin motors primarily move toward the plus end of microtubules, but the reason for this directionality is not well understood.
  • To investigate this, the researchers modeled kinesin-1 and its interactions with microtubules, revealing that kinesin-1 binding leads to structural changes in microtubules that promote binding and movement.
  • Their findings provide insights into how kinesin's stepping direction is established and how microtubules influence kinesin's function during its catalytic cycle.
View Article and Find Full Text PDF

The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and highly conserved ATP-dependent molecular chaperones that participate in the maintenance of cellular homeostasis. In , Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and collaborate in protein remodeling. Previous work has produced a model of the direct interaction of both chaperones.

View Article and Find Full Text PDF

The molecular motor myosin V transports cargo by stepping on actin filaments, executing a random diffusive search for actin binding sites at each step. A recent experiment suggests that the joint between the myosin lever arms may not rotate freely, as assumed in earlier studies, but instead has a preferred angle giving rise to structurally constrained diffusion. We address this controversy through comprehensive analytical and numerical modeling of myosin V diffusion and stepping.

View Article and Find Full Text PDF

The molecular motor myosin V (MyoV) exhibits a wide repertoire of pathways during the stepping process, which is intimately connected to its biological function. The best understood of these is the hand-over-hand stepping by a swinging lever arm movement toward the plus end of actin filaments. Single-molecule experiments have also shown that the motor "foot stomps," with one hand detaching and rebinding to the same site, and back-steps under sufficient load.

View Article and Find Full Text PDF

Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes.

View Article and Find Full Text PDF

The detachment kinetics from actin upon ATP binding is a key step in the reaction cycle of myosin V. We show that a network of residues, constituting the allostery wiring diagram (AWD), that trigger the rigor (R) to post-rigor (PR) transition, span key structural elements from the ATP and actin-binding regions. Several of the residues are in the 33 residue helix (H18), P loop, and switch I.

View Article and Find Full Text PDF

Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an alpha carbon atom, have been widely used to describe the motions encoded in the structures of proteins.

View Article and Find Full Text PDF

The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone misfolded state. During the catalytic reaction cycle, GroEL undergoes a series of allosteric transitions (T<-->R-->R"-->T) triggered by SP capture, ATP binding and hydrolysis, and GroES binding.

View Article and Find Full Text PDF