Molecular orientation in polymer solar cells (PSCs) is a critical subject of investigation that promotes the quality of bulk heterojunction morphology and power conversion efficiency (PCE). Herein, the intrinsic polymer orientation transition can be found upon delicate control over the branching point position of the irregular alkoxy side chain in difluoroquinoxaline-thiophene-based conjugated polymers. Three polymers with branching points at the third, fourth, and fifth positions away from the backbone were synthesized and abbreviated as PHT3, PHT4, and PHT5, respectively.
View Article and Find Full Text PDFDevice performance and commercialization of organic solar cells (OSCs) are strongly influenced by the characteristics of the interface layers. Cross-linked polymer interface layers with solvent-resistant properties are very compatible with large-area solution-processing methods of OSCs and may be beneficial to the environmental stability of OSCs due to the viscoelastic and cross-linked characteristics of the cross-linked polymer. In this work, a novel cross-linkable and alcohol-soluble pyridine-incorporated polyfluorene derivative, denoted as PFOPy, is synthesized and used as a cathode interface layer (CIL) in OSCs.
View Article and Find Full Text PDF