Background: The usability of dexterous hand prostheses is still hampered by the lack of natural and effective control strategies. A decoding strategy based on the processing of descending efferent neural signals recorded using peripheral neural interfaces could be a solution to such limitation. Unfortunately, this choice is still restrained by the reduced knowledge of the dynamics of human efferent signals recorded from the nerves and associated to hand movements.
View Article and Find Full Text PDFVisualization and tracking of the facial whiskers is critical to many studies of rodent behavior. High-speed videography is the most robust methodology for characterizing whisker kinematics, but whisker visualization is challenging due to the low contrast of the whisker against its background. Recently, we showed that fluorescent dye(s) can be applied to enhance visualization and tracking of whisker(s) ( Rigosa , 2017 ), and this protocol provides additional details on the technique.
View Article and Find Full Text PDFVisualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Although many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background.
View Article and Find Full Text PDFStimulation of peripheral nerves has transiently restored lost sensation and has the potential to alleviate motor deficits. However, incomplete characterization of the long-term usability and bio-integration of intra-neural implants has restricted their use for clinical applications. Here, we conducted a longitudinal assessment of the selectivity, stability, functionality, and biocompatibility of polyimide-based intra-neural implants that were inserted in the sciatic nerve of twenty-three healthy adult rats for up to six months.
View Article and Find Full Text PDFUnlabelled: Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures.
View Article and Find Full Text PDFReliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves.
View Article and Find Full Text PDFObjective: Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks.
View Article and Find Full Text PDFHand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses should involve both a reliable decoding of the user's intentions and the delivery of nearly "natural" sensory feedback through remnant afferent pathways, simultaneously and in real time.
View Article and Find Full Text PDFIn the present study we analyzed 12 physical parameters, namely force, static and dynamic balance (both quantified by means of 4 parameters each), rapidity, visual reaction times and acoustic reaction times, over 185 subjects. 170 of them played soccer in teams enrolled in all the ten different Italian soccer leagues. Results show that 6 parameters (out of the 12 analyzed) permit to identify and discriminate top-level players, among those showing the same training frequency.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2012
Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
The development of interfaces linking the human nervous system with artificial devices is an important area of research. Several groups are working on the development of devices able to restore sensory-motor function in subjects affected by neurological disorders, injuries or amputations. Neural electrodes implanted in peripheral nervous system, and in particular intrafascicular electrodes, seem to be a promising approach for the control of hand prosthesis thanks to the possibility to selectively access motor and sensory fibers for decoding motor commands and delivering sensory feedback.
View Article and Find Full Text PDFThis study aimed at the investigation of behavior of myoblasts in conditions of altered gravity. C2C12 cells underwent stimulations by different hypergravity intensities (2 h at 5 g, 10 g, and 20 g) in the Large Diameter Centrifuge of the European Space Agency (ESA), highlighting positive effects on both proliferation and differentiation.
View Article and Find Full Text PDFBackground: The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting.
View Article and Find Full Text PDFNeurorehabil Neural Repair
June 2012
Background: Interfacing an amputee's upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals.
Objective: To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands.
Methods: Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks.
Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control.
View Article and Find Full Text PDFDo central and peripheral motor pathways associated with an amputated limb retain at least some functions over periods of years? This problem could be addressed by evaluating the response patterns of nerve signals from peripheral motor fibers during transcranial magnetic stimulation (TMS) of corticospinal tracts. The aim of this study was to record for the first time TMS-related responses from the nerves of a left arm stump of an amputee via intrafascicular longitudinal flexible multi-electrodes (tfLIFE4) implanted for a prosthetic hand control. After tfLIFE4 implant in the stump median and ulnar nerves, TMS impulses of increasing intensity were delivered to the contralateral motor cortex while tfLIFE4 recordings were carried out.
View Article and Find Full Text PDFObjectives: The principle underlying this project is that, despite nervous reorganization following upper limb amputation, original pathways and CNS relays partially maintain their function and can be exploited for interfacing prostheses. Aim of this study is to evaluate a novel peripheral intraneural multielectrode for multi-movement prosthesis control and for sensory feed-back, while assessing cortical reorganization following the re-acquired stream of data.
Methods: Four intrafascicular longitudinal flexible multielectrodes (tf-LIFE4) were implanted in the median and ulnar nerves of an amputee; they reliably recorded output signals for 4 weeks.
Annu Int Conf IEEE Eng Med Biol Soc
April 2010
The development of hybrid neuroprosthetic systems (HBSs) linking the human nervous system with artificial devices is an important area of research that is currently addressed by several groups to restore sensorimotor function in people affected by different disabilities. It is particularly important to establish a fast, intuitive, bidirectional flow of information between the nervous system of the user and the smart robotic device. Among the possible solutions to achieve this goal, interfaces with the peripheral nervous system and in particular intraneural electrodes can represent an interesting choice.
View Article and Find Full Text PDF