Bond cleavage bioorthogonal chemistry has been widely employed to restore or activate proteins or prodrugs. Nitric oxide (NO), as a free radical molecule, has joined the clinical arena of cancer therapy, since high levels of NO could produce a cancer cell growth inhibitory effect. However, the spatiotemporal controlled release of NO remains a great challenge, and bioorthogonal chemistry may open a new window.
View Article and Find Full Text PDF5-Methylpyrazine-2-carboxylic acid (MPCA) is an important pharmaceutical intermediate and is used in the production of hypoglycemic agents and lipid-lowering drugs. This work aimed to develop a whole-cell biocatalytic process for the efficient synthesis of MPCA from 2, 5-dimethylpyrazine (DMP). Firstly, a whole-cell biocatalyst Escherichia coli strain was constructed by plasmid-based expression of xylene monooxygenase (XMO), benzyl alcohol dehydrogenase (BADH), and benzaldehyde dehydrogenase (BZDH) from Pseudomonas putida ATCC 33015, resulting in MPCA titer of 5.
View Article and Find Full Text PDFA group of nitrate derivatives of naturally occurring sauropunol A and B were designed and synthesized. Nitric oxide (NO) releasing capacity and vasodilatory capacity studies were performed to explore the structure-activity relationship of resulted nitrates. Biological evaluation of these compounds revealed that most of the synthesized mononitrate derivatives demonstrated superior releasing capacity than isosorbide mononitrate (ISMN), and even demonstrated stronger NO releasing capacity than isosorbide dinitrate (ISDN).
View Article and Find Full Text PDF