Escherichia coli regulates cytosolic free Ca(2+) in the micromolar range through influx and efflux. Herein, we show for the first time that ATP is essential for Ca(2+) efflux and that ATP levels also affect generation time. A transcriptome analysis identified 110 genes whose expression responded to an increase in cytosolic Ca(2+) (41 elevated, 69 depressed).
View Article and Find Full Text PDFProtein Expr Purif
October 2009
The breast cancer metastasis suppressor 1 (BRMS1) is a member of a family of proteins that actively suppress tumour metastasis. Understanding BRMS1 mediated metastasis suppression is critical to the development of new therapies designed to prevent and treat patients with late stage breast cancer. To aid research into the functional aspects that underpin BRMS1 mediated metastasis suppression we have expressed and purified recombinant BRMS1 and produced BRMS1 polyclonal antibodies.
View Article and Find Full Text PDFBackground: The breast cancer susceptibility protein, BRCA1 functions to maintain the integrity of the genome. The exact mechanisms by which it does so, however, remain unclear. The ability of BRCA1 to bind directly to DNA suggests a more direct role.
View Article and Find Full Text PDFThe results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.
View Article and Find Full Text PDFThe results here are the first demonstration of a family of carbohydrate fermentation products opening Ca2+ channels in bacteria. Methylglyoxal, acetoin (acetyl methyl carbinol), diacetyl (2,3 butane dione), and butane 2,3 diol induced Ca2+ transients in Escherichia coli, monitored by aequorin, apparently by opening Ca2+ channels. Methylglyoxal was most potent (K(1/2) = 1 mM, 50 mM for butane 2,3 diol).
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2007
The results here are the first clear demonstration of a physiological role for cytosolic Ca(2+) in Escherichia coli by releasing a Ca(2+) binding protein, apoaequorin, from inclusion bodies. In growth medium LB the cytosolic free Ca(2+) was 0.1-0.
View Article and Find Full Text PDFThe results here are the first demonstration of a physiological agonist opening Ca2+ channels in bacteria. Bacteria in the gut ferment glucose and other substrates, producing alcohols, diols, ketones and acids, that play a key role in lactose intolerance, through the activation of Ca2+ and other ion channels in host cells and neighbouring bacteria. Here we show butane 2,3-diol (5-200mM; half maximum 25mM) activates Ca2+ transients in E.
View Article and Find Full Text PDFThe breast cancer susceptibility gene, BRCA1, encodes a large nuclear phosphoprotein, the major isoform of which is 1863 amino acids in size. Structure-function studies have been largely restricted to the only two domains identified by homology searches: the RING (really interesting new gene) and BRCT (BRCA1 C-terminus) domains. However, we have recently reported the identification of a large central soluble region of BRCA1 (residues 230-534) that binds specifically to four-way junction DNA, a property that potentially facilitates its role in the repair of DNA lesions by homologous recombination.
View Article and Find Full Text PDFThe BRCA1 gene encodes a large multidomain protein of 1863 residues, mutations in which lead to breast cancer. Studies to elucidate the mechanisms by which BRCA1 prevents tumour formation have been restricted by the size of the protein. Unable to purify large amounts of the full-length protein, we have identified a fragment of BRCA1, amino acid residues 230-534, that when cloned into the expression vector pET 22b and expressed in Escherichia coli is found predominantly in the soluble portion of the cell lysate.
View Article and Find Full Text PDF