Publications by authors named "Riffard Jean-Gilles"

Recombinant adeno-associated virus (rAAV)-based gene therapies are expanding in their application. Despite progress in manufacturing, current analytical methods for product quantification and characterization remain largely unchanged. Although critical for product and process development, in-process testing, and batch release, current analytical methods are labor-intensive, costly, and hampered by extended turnaround times and low throughput.

View Article and Find Full Text PDF

Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells.

View Article and Find Full Text PDF

Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-l-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy.

View Article and Find Full Text PDF

BACKGROUND: Electrospun nanofibers have been utilized in many biomedical applications as biomimetics of extracellular matrix proteins that promote self-organization of cells into 3D tissue constructs. As progress towards an artificial salivary gland tissue construct, we prepared nanofiber scaffolds using PLGA, a biodegradable and biocompatible material. METHOD OF APPROACH: We used electrospinning to prepare nanofiber scaffolds using PLGA with both DMF and HFIP as solvents.

View Article and Find Full Text PDF