Publications by authors named "Rieuwert Hoppes"

T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge.

View Article and Find Full Text PDF

MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues.

View Article and Find Full Text PDF

Virus or tumor Ag-derived peptides that are displayed by MHC class I molecules are attractive starting points for vaccine development because they induce strong protective and therapeutic cytotoxic T cell responses. In thus study, we show that the MHC binding and consequent T cell reactivity against several HLA-A*02 restricted epitopes can be further improved through the incorporation of nonproteogenic amino acids at primary and secondary anchor positions. We screened more than 90 nonproteogenic, synthetic amino acids through a range of epitopes and tested more than 3000 chemically enhanced altered peptide ligands (CPLs) for binding affinity to HLA-A*0201.

View Article and Find Full Text PDF

Incorporation of cleavable linkers into peptides and proteins is of particular value in the study of biological processes. Here we describe the synthesis of a cleavable linker that is hypersensitive to oxidative cleavage as the result of the periodate reactivity of a vicinal amino alcohol moiety. Two strategies directed towards the synthesis of a building block suitable for solid-phase peptide synthesis were developed: a chemoenzymatic route, involving L-threonine aldolase, and an enantioselective chemical route; these led to α,γ-diamino-β-hydroxybutanoic acids in diastereoisomerically mixed and enantiopure forms, respectively.

View Article and Find Full Text PDF

T cell epitopes are peptides, for instance derived from foreign, mutated or overexpressed proteins, that are displayed by MHC molecules on the cell surface and that are recognized by T lymphocytes. Knowledge of the identity of epitopes displayed by MHC molecules is of high value for diagnostic purposes and for the development of prophylactic and therapeutic immunotherapy regimens. Here we review key techniques in MHC class I epitope definition and we discuss recent developments in epitope discovery and their implications.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8(+) T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2.

View Article and Find Full Text PDF

Background: The Tet-Off (tTA) and Tet-On (rtTA) regulatory systems are widely applied to control gene expression in eukaryotes. Both systems are based on the Tet repressor (TetR) from transposon Tn10, a dimeric DNA-binding protein that binds to specific operator sequences (tetO). To allow the independent regulation of multiple genes, novel Tet systems are being developed that respond to different effectors and bind to different tetO sites.

View Article and Find Full Text PDF

2',5'-Oligoadenylate tetramer (2-5A) has been chemically conjugated to short HIV-1 Tat peptides to provide 2-5A-tat chimeras. Two different convergent synthetic approaches have been employed to provide such 2-5A-tat bioconjugates. One involved generation of a bioconjugate through reaction of a cysteine terminated Tat peptide with a alpha-chloroacetyl derivative of 2-5A.

View Article and Find Full Text PDF