Brain-inspired, neuromorphic computing aims to address the growing computational complexity and power consumption in modern von-Neumann architectures. Progress in this area has been hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage the short/long term memory effects due to the electron trapping events in an atomically thin channel transistor that mimic the exchange of neurotransmitters and emulate a synaptic response.
View Article and Find Full Text PDF