Publications by authors named "Rienks E"

To generate and manipulate spin-polarized electronic states in solids are crucial for modern spintronics. The textbook routes employ quantum well states or Shockley/topological type surface states whose spin degeneracy is lifted by strong spin-orbit coupling and inversion symmetry breaking at the surface/interface. The resultant spin polarization is usually truncated because of the intertwining between multiple orbitals.

View Article and Find Full Text PDF

Condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics. Here, using angle-resolved photoemission spectroscopy, we provide an example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the emergence of new Weyl fermions in the ferrimagnetic state.

View Article and Find Full Text PDF

Colossal negative magnetoresistance is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. In contrast, topological semimetals show large but positive magnetoresistance, originated from the high-mobility charge carriers.

View Article and Find Full Text PDF

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative.

View Article and Find Full Text PDF

Artificial graphene based on molecular networks enables the creation of novel 2D materials with unique electronic and topological properties. Landau quantization has been demonstrated by CO molecules arranged on the two-dimensional electron gas on Cu(111) and the observation of electron quantization may succeed based on the created gauge fields. Recently, it was reported that instead of individual manipulation of CO molecules, simple deposition of nonpolar C molecules on Cu(111) and Au(111) produces artificial graphene as evidenced by Dirac cones in photoemission spectroscopy.

View Article and Find Full Text PDF

The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping, and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50% effective mass enhancement in angle-resolved photoemission of CsPbBr_{3} over theory for the orthorhombic structure. We present in-depth band dispersion measurements of CsPbBr_{3} and GW calculations, which lead to similar effective masses at the valence band maximum of 0.

View Article and Find Full Text PDF

In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound [Formula: see text] (URS) into the so-called hidden-order (HO) phase when the temperature drops below [Formula: see text] K.

View Article and Find Full Text PDF

Multifold degenerate points in the electronic structure of metals lead to exotic behaviors. These range from twofold and fourfold degenerate Weyl and Dirac points, respectively, to sixfold and eightfold degenerate points that are predicted to give rise, under modest magnetic fields or strain, to topological semimetallic behaviors. The present study shows that the nonsymmorphic compound PdSb hosts six-component fermions or sextuplets.

View Article and Find Full Text PDF

SmB has recently attracted considerable interest as a candidate for the first strongly correlated topological insulator. Such materials promise entirely new properties such as correlation-enhanced bulk bandgaps or a Fermi surface from spin excitations. Whether SmB and its surface states are topological or trivial is still heavily disputed however, and a solution is hindered by major disagreement between angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM) results.

View Article and Find Full Text PDF

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, T (ref.

View Article and Find Full Text PDF

SmB is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the [Formula: see text] state to appear Rashba split and explain the prominent [Formula: see text] state by a surface shift of the many-body resonance.

View Article and Find Full Text PDF

The topological phases of matter provide the opportunity to observe many exotic properties, such as the existence of 2D topological surface states in the form of Dirac cones in topological insulators and chiral transport through the open Fermi arc in Weyl semimetals. However, these properties affect the transport characteristics and, therefore, may be useful for applications only if the topological phenomena occur near the Fermi level. CaAgAs is a promising candidate for which the ab initio calculations predict line-nodes at the Fermi energy.

View Article and Find Full Text PDF

The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts.

View Article and Find Full Text PDF

The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) is difficult to realize in quantum materials because, unlike in ultracold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal, Fe Se Te , by tuning the Fermi energy ε via chemical doping, which permits us to systematically change Δ/ε from 0.16 to 0.

View Article and Find Full Text PDF

The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties, including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. In this work, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the centre of the Brillouin zone, by employing angle-resolved photoemission spectroscopy in conjunction with ab initio calculations.

View Article and Find Full Text PDF

Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncentrosymmetric α-BiPd superconductor by employing angle-resolved photoemission spectroscopy and first-principles calculations. We observe that the Dirac surface states of this system have several interesting and unusual properties, compared to other topological surface states.

View Article and Find Full Text PDF

We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band.

View Article and Find Full Text PDF

We reveal a giant Rashba effect (α(R)≈1.3  eV Å) on a surface state of Ir(111) by angle-resolved photoemission and by density functional theory. It is demonstrated that the existence of the surface state, its spin polarization, and the size of its Rashba-type spin-orbit splitting remain unaffected when Ir is covered with graphene.

View Article and Find Full Text PDF

We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi(2)Se(3) from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.

View Article and Find Full Text PDF

An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.

View Article and Find Full Text PDF

Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means.

View Article and Find Full Text PDF

The (114) surface of the semimetal Bi is found to support a quasi-one-dimensional, metallic surface state. As required by symmetry, the state is degenerate along the Gamma-Y line of the surface Brillouin zone with a highest binding energy of approximately 150 meV. In the Gamma-X direction the degeneracy is lifted by the strong spin-orbit splitting in Bi, as directly shown by spin-resolved photoemission.

View Article and Find Full Text PDF

We present a combined experimental (STM/scanning tunneling spectroscopy) and theoretical (density functional theory) study on the deposition of Au and Pd metal atoms on FeO/Pt(111) ultrathin films. We show that while the Pd atoms are only slightly oxidized, the Au atoms form positive ions upon deposition, at variance to a charge transfer into the Au atoms as observed for MgO/Ag(100). The modulation of the adsorption properties within the surface Moiré cell and the charging induce the formation a self-assembled array of gold adatoms on FeO/Pt(111), whereas Pd atoms are randomly distributed.

View Article and Find Full Text PDF

High energy resolution fast XPS combined with TPD experiments were used to study the effect of chemisorbed oxygen on the adsorption and dissociation of NH(3) on Ir(110). Below 250 K the presence of O(ad) does not influence NH(3) decomposition. Above 250 K O(ad) enhances NH(3) dissociation, which results in three times as much N(2) formation and less molecular NH(3) desorption compared to the experiments without O(ad).

View Article and Find Full Text PDF

The spatial distribution of single Au atoms on a thin FeO film has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The adatoms preferentially adsorb on distinct sites of the Moiré cell formed by the oxide layer and the Pt(111) support and arrange into a well-ordered hexagonal superlattice with 25 angstroms lattice constant. The self-organization is the consequence of an inhomogeneous surface potential within the FeO Moiré cell and substantial electrostatic repulsion between the adatoms.

View Article and Find Full Text PDF