Biochim Biophys Acta Mol Basis Dis
January 2025
Chimeric antigen receptor (CAR)-modified natural killer (NK) cells show antileukemic activity against acute myeloid leukemia (AML) in vivo. However, NK cell-mediated tumor killing is often impaired by the interaction between human leukocyte antigen (HLA)-E and the inhibitory receptor, NKG2A. Here, we describe a strategy that overcomes CAR-NK cell inhibition mediated by the HLA-E-NKG2A immune checkpoint.
View Article and Find Full Text PDFMonocytes, the circulating macrophage precursors, contribute to diseases like atherosclerosis and asthma. Long non-coding RNAs (lncRNAs) have been shown to modulate the phenotype and inflammatory capacity of monocytes. We previously discovered the lncRNA SMANTIS, which contributes to cellular phenotype expression by controlling BRG1 in mesenchymal cells.
View Article and Find Full Text PDFNeurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents.
View Article and Find Full Text PDFThe bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1).
View Article and Find Full Text PDFThe function of regulatory elements is highly dependent on the cellular context, and thus for understanding the function of elements associated with psychiatric diseases these would ideally be studied in neurons in a living brain. Massively Parallel Reporter Assays (MPRAs) are molecular genetic tools that enable functional screening of hundreds of predefined sequences in a single experiment. These assays have not yet been adapted to query specific cell types in vivo in a complex tissue like the mouse brain.
View Article and Find Full Text PDFMolecular markers for predicting prognosis of colorectal cancer (CRC) patients are urgently needed for effective disease management. We reported previously that the multifunctional enzyme Transglutaminase 2 (TGM2) is essential for CRC cell survival by inactivation of the tumor suppressor p53. Based on these data, we determined the clinical relevance of TGM2 expression and explored its potential as prognostic marker and therapeutic target in CRC.
View Article and Find Full Text PDFPrey respond to predators by altering their behavior to optimize their own fitness and survival. Specifically, prey are known to avoid predator-occupied territories to reduce their risk of harm or injury to themselves and their progeny. We probe the interactions between and its naturally cohabiting predator to reveal the pathways driving changes in prey behavior.
View Article and Find Full Text PDFKMT2A-rearranged acute lymphoblastic infant leukemia (KMT2A-r iALL) is associated with outsize risk of relapse and relapse mortality. We previously reported strong upregulation of the immediate early gene EGR3 in KMT2A::AFF1 iALL at relapse; now we provide analyses of the EGR3 regulome, which we assessed through binding and expression target analysis of an EGR3-overexpressing t(4;11) cell culture model. Our data identify EGR3 as a regulator of early B-lineage commitment.
View Article and Find Full Text PDFBackground: Mutations in the clonal hematopoiesis of indeterminate potential (CHIP)-driver genes DNMT3A and TET2 have been previously shown to be associated with short-term prognosis in patients undergoing TAVR for aortic valve stenosis. We aimed to extend and characterize these findings on long-term outcome in a large cohort.
Methods: A total of 453 consecutive patients undergoing TAVR were included in an up to 4-year follow-up study.
Inn Med (Heidelb)
November 2022
The occurrence of clonal hematopoiesis, caused by acquired somatic mutations of leukemia-associated genes in blood stem cells is very common in the population and increases with age. Besides an increased risk of developing myeloid neoplasms, an unexpected causal relationship between clonal hematopoiesis and cardiovascular diseases was recently discovered. Clonal hematopoiesis presents as a new independent and strong risk factor for cardiovascular diseases, such as atherosclerosis, coronary heart disease, heart failure, aortic valve stenosis and stroke, which from a medical perspective should no longer be ignored.
View Article and Find Full Text PDFFlow cytometry is a powerful technology that allows not only multiparameter quantitative data analysis at single cell resolution but also simultaneous cell separation of different populations of interest at high speed. It has been rapidly employed in biological research and clinical diagnostics. This technology has enabled the thorough understanding of murine hematopoiesis, especially the physiology of surface marker-defined hematopoietic stem and progenitor cell populations.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward.
View Article and Find Full Text PDFBackground: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogenous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified.
View Article and Find Full Text PDFDuring the last decade, cardiac optogenetics has turned into an essential tool for investigating cardiac function in general and for assessing functional interactions between different myocardial cell types in particular. To advance exploitation of the unique research opportunities offered by this method, we develop a panoramic opto-electrical measurement and stimulation (POEMS) system for mouse hearts. The core of the experimental platform is composed of 294 optical fibers and 64 electrodes that form a cup which embraces the entire ventricular surface of mouse hearts and enables straightforward 'drop&go' experimentation.
View Article and Find Full Text PDF