The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA-directed DNA methylation of transposons in sperm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2011
Imprinted genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering plants and mammals. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes as well as by Polycomb group proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
DNA glycosylases initiate the base excision repair (BER) pathway by excising damaged, mismatched, or otherwise modified bases. Animals and plants independently evolved active BER-dependent DNA demethylation mechanisms important for epigenetic reprogramming. One such DNA demethylation mechanism is uniquely initiated in plants by DEMETER (DME)-class DNA glycosylases.
View Article and Find Full Text PDFPlant Physiol
December 2007
DNA demethylation in Arabidopsis (Arabidopsis thaliana) is mediated by DNA glycosylases of the DEMETER family. Three DEMETER-LIKE (DML) proteins, REPRESSOR OF SILENCING1 (ROS1), DML2, and DML3, function to protect genes from potentially deleterious methylation. In Arabidopsis, much of the DNA methylation is directed by RNA interference (RNAi) pathways and used to defend the genome from transposable elements and their remnants, repetitive sequences.
View Article and Find Full Text PDF