Cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome. However, the mechanism by which they are recognized and targeted to the exosome is not fully understood. Here we report that the MTREC complex, which has recently been shown to promote degradation of meiotic mRNAs and regulatory ncRNAs, is also the major nuclear exosome targeting complex for CUTs and unspliced pre-mRNAs in Schizosaccharomyces pombe.
View Article and Find Full Text PDFZinc-finger domains are found in many nucleic acid-binding proteins in both prokaryotes and eukaryotes. Proteins carrying zinc-finger domains have important roles in various nuclear transactions, including transcription, mRNA processing and mRNA export; however, for many individual zinc-finger proteins in eukaryotes, the exact function of the protein is not fully understood. Here, we report that Red5 is involved in efficient suppression of specific mRNAs during vegetative growth of Schizosaccharomyces pombe.
View Article and Find Full Text PDFIn the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast.
View Article and Find Full Text PDFSchizosaccharomyces pombe cells switch mating type by replacing genetic information at the expressed mat1 locus with sequences copied from mat2-P or mat3-M silent donor loci. The choice of donor locus is dictated by cell type, such that mat2 is the preferred donor in M cells and mat3 is the preferred donor in P cells. Donor choice involves a recombination-promoting complex (RPC) containing Swi2 and Swi5.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2011
Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFMeiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully.
View Article and Find Full Text PDF