Publications by authors named "Rie Schultz Hansen"

Introduction: Ischemia/reperfusion injury (I/R-I) is a leading cause of acute kidney injury (AKI) and is associated with increased mortality. Danegaptide is a selective modifier of the gap junction protein connexion 43. It has cytoprotective as well as anti-arrhythmic properties and has been shown to reduce the size of myocardial infarct in pigs.

View Article and Find Full Text PDF

Background: A loss of repolarization reserve due to downregulation of K(+) currents has been observed in cultured ventricular myocytes. A similar reduction of K(+) currents is well documented under numerous pathophysiological conditions. We examined the extent of K(+) current downregulation in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration.

View Article and Find Full Text PDF

Connexin 43 is located in the cardiomyocyte sarcolemma and in the mitochondrial membrane. Sarcolemmal connexin 43 contributes to the spread of myocardial ischemia/reperfusion injury, whereas mitochondrial connexin 43 contributes to cardioprotection. We have now investigated the antiarrhythmic dipeptide ZP1609 (danegaptide), which is an analog of the connexin 43 targeting antiarrhythmic peptide rotigaptide (ZP123), in an established and clinically relevant experimental model of ischemia/reperfusion in pigs.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is associated with increased morbidity and is in addition the most prevalent cardiac arrhythmia. Compounds used in pharmacological treatment has traditionally been divided into Na(+) channel inhibitors, β-blockers, K(+) channel inhibitors, and Ca(2+) channel inhibitors, whereas newer multichannel blockers such as amiodarone and ranolazine have been introduced later. This study was devoted to the evaluation of an acute pacing-induced in vivo model of AF in rats.

View Article and Find Full Text PDF

Background: Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors, UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA), and NS8593, to assess the hypothesis that pharmacological inhibition of SK channels is antiarrhythmic.

Methods And Results: In isolated, perfused guinea pig hearts, AF could be induced in all control hearts (n=7) with a combination of 1 micromol/L acetylcholine combined with electric stimulation.

View Article and Find Full Text PDF

The ionic current responsible for terminating the action potential (AP), and thereby in part determining the AP duration (APD), is the potassium current (IK), consisting of primarily two components: a rapidly (IKr) and a slowly (IKs) activating delayed rectifier potassium current. The aim of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C.

View Article and Find Full Text PDF

The cardiac action potential is the result of an orchestrated function of a number of different ion channels. Action potential repolarisation in humans relies on three potassium current components named I(Kr), I(Ks) and I(K1) with party overlapping functions. The ion channel alpha-subunits conducting these currents are hERG1 (Kv11.

View Article and Find Full Text PDF

Background: Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death.

View Article and Find Full Text PDF

The short QT syndrome is a newly discovered pro-arrhythmic condition, which may cause ventricular fibrillation and sudden death. Short QT can originate from the apparent gain-of-function mutation N588K in the hERG potassium channel that conducts repolarising I(Kr) current. The present study describes a profound biophysical characterization of HERG-N588K revealing both loss-of-function and gain-of-function properties of the mutant.

View Article and Find Full Text PDF

Activation of the large-conductance Ca(2+)-activated K(+) channel (BK) in the cardiac inner mitochondrial membrane has been suggested to protect the heart against ischemic injury. However, these findings are limited by the low selectivity profile and potency of the BK channel activator (NS1619) used. In the present study, we address the cardioprotective role of BK channels using a novel, potent, selective, and chemically unrelated BK channel activator, NS11021.

View Article and Find Full Text PDF

The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations are most often caused by antagonizing effects on the repolarizing cardiac current called IKr.

View Article and Find Full Text PDF

In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be standard KCNQ potassium channel blockers.

View Article and Find Full Text PDF

Recently, attention has been drawn to compounds that activate the human ether-a-go-go channel potassium channel (hERG), which is responsible for the repolarizing rapid delayed rectifier potassium current (I(Kr)) in the mammalian myocardium. The compound NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl) urea] increases the macroscopic current conducted by the hERG channels by increasing the time constant for channel inactivation, which we have reported earlier. In vitro studies suggest that pharmacological activation is an attractive approach for the treatment of some arrhythmias.

View Article and Find Full Text PDF

Within the field of new antiarrhythmic compounds, the interesting idea of activating human ether-a-go-go-related gene (HERG1) potassium channels has recently been introduced. Potentially, drugs that increase HERG1 channel activity will augment the repolarizing current of the cardiac myocytes and stabilize the diastolic interval. This may make the myocardium more resistant to events that cause arrhythmias.

View Article and Find Full Text PDF

To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.

View Article and Find Full Text PDF

The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolarization current could be a new antiarrhythmic principle, because it possibly would attenuate afterdepolarizations, ischemic leak currents, and reentry phenomena.

View Article and Find Full Text PDF