Publications by authors named "Rie Matsumi"

Development of dental plaque begins with the adhesion of salivary bacteria to the acquired pellicle covering the tooth surface. In this study, we collected dental plaque formed on hydroxyapatite disks for 6 h from 74 young adults and identified initial colonizing taxa based on full-length 16S rRNA gene sequences. A long-read, single-molecule sequencer, PacBio Sequel, provided 100,109 high-quality full-length 16S rRNA gene sequence reads from the early plaque microbiota, which were assigned to 90 oral bacterial taxa.

View Article and Find Full Text PDF

The salivary microbiota is constantly swallowed and delivered to the digestive tract. These bacteria may be associated with gastrointestinal diseases. This case-control study examined the salivary microbiota in patients with digestive tract cancer (DTC) and evaluated their differential distribution based on the cancer sites.

View Article and Find Full Text PDF

Coffee is a widely consumed beverage containing organic compounds with antibacterial activity. To investigate its possible effect on the growth of oral indigenous microbiota, saliva samples collected from nine young adults were inoculated into brain heart infusion (BHI) medium with or without addition of coffee compounds and cultured at 37°C in 5% CO for 12 h. The total bacterial density and composition after cultivation for 0, 6, and 12 h were determined by quantitative PCR analysis and 16S rRNA gene sequencing, respectively.

View Article and Find Full Text PDF

: has been reported to be a high producer of acetaldehyde (ACH), a carcinogen, from ethanol , but no information exists regarding whether the ACH production depends on oral microbiota profiles. To explore the salivary microbiota profiles with respect to ACH production ability in the oral cavity using a cross-sectional design. Using 16S rRNA gene amplicon sequencing, we classified 100 saliva samples into two types of communities (I and II).

View Article and Find Full Text PDF

The initiation of DNA replication is typically tightly regulated by proteins that form initiation complexes at specific sequences known as replication origins. In Archaea and Eukaryotes, Cdc6, a near-universally conserved protein binds and facilitates the origin-dependent assembly of the replicative apparatus. TK1901 encodes Cdc6 in but, as we report here, TK1901 and the presumed origin of replication can be deleted from the genome of this hyperthermophilic Archaeon without any detectable effects on growth, genetic competence or the ability to support autonomous plasmid replication.

View Article and Find Full Text PDF

Hydrogenase pleiotropically acting protein (Hyp)E plays a role in biosynthesis of the cyano groups for the NiFe(CN)2CO center of [NiFe] hydrogenases by catalyzing the ATP-dependent dehydration of the carbamoylated C-terminal cysteine of HypE to thiocyanate. Although structures of HypE proteins have been determined, until now there has been no structural evidence to explain how HypE dehydrates thiocarboxamide into thiocyanate. Here, we report the crystal structures of the carbamoylated and cyanated forms of HypE from Thermococcus kodakarensis in complex with nucleotides at 1.

View Article and Find Full Text PDF

HypB (metal-binding GTPase) and HypA (nickel metallochaperone) are required for nickel insertion into [NiFe] hydrogenase. However, the HypB homolog proteins are not found in some archaeal species including Thermococcales. In this article, we identify a novel archaeal Mrp/MinD family ATPase-type HypB from Thermococcus kodakarensis (Tk-mmHypB) and determine its crystal structure.

View Article and Find Full Text PDF

[NiFe] hydrogenase maturation represents one of the most dynamic and sophisticated processes in metallocenter assembly. The Fe(CN)(2)CO moiety of [NiFe] hydrogenases is assembled via unknown transient interactions among specific maturation proteins HypC (metallochaperone), HypD (redox protein), and HypE (cyanide synthesis/donor). Here, we report the structures of the HypC-HypD and HypC-HypD-HypE complexes, providing a view of the transient interactions that take place during the maturation process.

View Article and Find Full Text PDF

HypF is involved in the biosynthesis of the CN ligand of the NiFe(CN)(2)CO centre of [NiFe]-hydrogenases. Here, the full-length structure of HypF from Thermococcus kodakarenesis is reported at 4.5 Å resolution.

View Article and Find Full Text PDF

Being distinct from bacteria and eukaryotes, Archaea constitute a third domain of living things. The DNA replication, transcription, and translation machineries of Archaea are more similar to those of eukaryotes, whereas the genes involved in metabolic processes show more similarity to their bacterial counterparts. We report here that TK0471/TrmB-like 2 (TrmBL2), in addition to histone, is a novel type of abundant chromosomal protein in the model euryarchaeon Thermococcus kodakarensis .

View Article and Find Full Text PDF

Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea, isoprenoid compounds constitute the hydrophobic moiety of the typical ether-linked membrane lipids.

View Article and Find Full Text PDF

Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H(2) (with a change in Gibbs free energy of ΔG° = +1.3 kJ mol(-1)) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp.

View Article and Find Full Text PDF

Many of the marine microorganisms which are adapted to grow at temperatures above 80 degrees C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon.

View Article and Find Full Text PDF

HypA is one of the auxiliary proteins involved in the maturation of [NiFe] hydrogenases. By an unknown mechanism, HypA functions as a metallochaperone in the insertion of the Ni atom into hydrogenases. We have determined the crystal structures of HypA from Thermococcus kodakaraensis KOD1 in both monomeric and dimeric states.

View Article and Find Full Text PDF

An in vivo archaeal gene reporter system has been established based on TK1761, a gene that encodes a nonessential beta-glycosidase in Thermococcus kodakaraensis. Following the introduction of nonsense codons into promoter-proximal genes, polarity in operon expression in this archaeon has been established by both microarray hybridization assays and a reporter gene expression system.

View Article and Find Full Text PDF

The hydrogenase maturation protein HypE is involved in the biosynthesis of the CN ligands of the active-site iron of [NiFe] hydrogenases using carbamoylphosphate as a substrate. Here, the crystallization and preliminary crystallographic analysis of HypE from Thermococcus kodakaraensis KOD1 are reported. Crystals of HypE (338 amino acids, 35.

View Article and Find Full Text PDF

[NiFe] hydrogenase maturation proteins HypC, HypD, and HypE catalyze the insertion and cyanation of the iron center of [NiFe] hydrogenases by an unknown mechanism. We have determined the crystal structures of HypC, HypD, and HypE from Thermococcus kodakaraensis KOD1 at 1.8 A, 2.

View Article and Find Full Text PDF

HypC and HypD proteins are required for the insertion of the Fe atom with diatomic ligands into the large subunit of [NiFe] hydrogenases, an important step in the maturation process of this type of hydrogenase. The crystallization and preliminary crystallographic analysis of HypC and HypD from Thermococcus kodakaraensis KOD1 are reported. Crystals of HypC grew in two different forms.

View Article and Find Full Text PDF

We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter.

View Article and Find Full Text PDF

We have isolated a poly(vinyl alcohol) (PVA)-degrading bacterium from an activated sludge sample obtained from the drainage of a dyeing factory. Enrichment cultures were performed in media containing PVA as the sole or major carbon source. After several rounds of cultivation on liquid and solid media, we were able to isolate a single colony with PVA-degrading ability (strain PVA3).

View Article and Find Full Text PDF

Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme.

View Article and Find Full Text PDF

We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further.

View Article and Find Full Text PDF

The genus Thermococcus, comprised of sulfur-reducing hyperthermophilic archaea, belongs to the order Thermococcales in Euryarchaeota along with the closely related genus Pyrococcus. The members of Thermococcus are ubiquitously present in natural high-temperature environments, and are therefore considered to play a major role in the ecology and metabolic activity of microbial consortia within hot-water ecosystems. To obtain insight into this important genus, we have determined and annotated the complete 2,088,737-base genome of Thermococcus kodakaraensis strain KOD1, followed by a comparison with the three complete genomes of Pyrococcus spp.

View Article and Find Full Text PDF

We disrupted the reverse gyrase gene from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. An apparent positive supercoiling activity that was observed in the host strain was not found in the disruptant strain. We found that a lack of reverse gyrase led to a retardation in growth that was more striking at higher temperatures.

View Article and Find Full Text PDF