Vehicle ad hoc networks (VANETs) are a vital part of intelligent transportation systems (ITS), offering a variety of advantages from reduced traffic to increased road safety. Despite their benefits, VANETs remain vulnerable to various security threats, including severe blackhole attacks. In this paper, we propose a deep-learning-based secure routing (DLSR) protocol using a deep-learning-based clustering (DLC) protocol to establish a secure route against blackhole attacks.
View Article and Find Full Text PDFThe network area is extended from ground to air. In order to efficiently manage various kinds of nodes, new network paradigms are needed such as cell-free massive multiple-input multiple-output (CF-mMIMO). Additionally, security is also considered as one of the important quality-of-services (QoS) parameters in future networks.
View Article and Find Full Text PDFMultihop transmission is one of the important techniques to overcome the transmission coverage of each node in wireless sensor networks (WSNs). However, multihop transmission has a security issue due to the nature of a wireless medium. Additionally, the eavesdropper also attempts to interrupt the legitimate users' transmission.
View Article and Find Full Text PDFIn ad-hoc vehicle networks (VANETs), the random mobility causes the rapid network topology change, which leads to the challenge of the reliable data transmission. In this paper, we propose a hybrid-price auction-based secure routing (HPA-SR) protocol using advanced speed and cosine similarity-based (ASCS) clustering to establish a secure route to avoid sinkhole attacks and improve connectivity between nodes. The main features and contributions of the proposed HPA-SR protocol are as follows.
View Article and Find Full Text PDF