Selfish genetic elements that gain a transmission advantage through the destruction of sperm have grave implications for drive male fertility. In the X-linked meiotic drive system (SR) of a stalk-eyed fly, we found that SR males have greatly enlarged testes and maintain high fertility despite the destruction of half of their sperm, even when challenged with fertilizing large numbers of females. Conversely, we observed reduced allocation of resources to the accessory glands that probably explains the lower mating frequency of SR males.
View Article and Find Full Text PDFMeiotic drive genes cause the degeneration of non-carrier sperm to bias transmission in their favour. Males carrying meiotic drive are expected to suffer reduced fertility due to the loss of sperm and associated harmful side-effects of the mechanisms causing segregation distortion. However, sexual selection should promote adaptive compensation to overcome these deleterious effects.
View Article and Find Full Text PDF