The capacity to tune the degree of mucoadhesion and mucopenetration of nanoparticles is essential to improving drug bioavailability, transport, and efficacy at mucosal interfaces. Herein, self-assembled nanoparticles (NPs) fabricated from amphiphilic block copolymers of poly(lactic acid) (PLA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA) with various side chain lengths (PLA-POEGMA) are reported to facilitate tunable mucosal interactions. PLA-POEGMA nanoparticles with long PEG side chain lengths ( = 20, or 40) demonstrated mucoadhesive properties based on rheological synergism, calorimetric tracking of mucin-nanoparticle interactions, and the formation of larger NP-mucin hybrid structures; in contrast, NPs fabricated from block copolymers with shorter PEG side chains ( = 2/8-9 or = 8,9) showed poor mucoadhesion but penetrated through the mucin layer with significantly higher permeation rates (>80%).
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose.
View Article and Find Full Text PDFWhile microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g.
View Article and Find Full Text PDFThere is a growing demand for effective treatments for ocular conditions that improve patient compliance and reduce side-effects. While methods such as implants and injections have proven effective, topical administration remains the method of choice for the delivery of therapeutics to the anterior segment of the eye. However, topical administration suffers from multiple drawbacks including low bioavailability of the target therapeutic, systemic toxicity, and the requirement for high therapeutic doses due to the effective clearance mechanisms that exist in the eye.
View Article and Find Full Text PDF