The rapid increase of online educational content has made it harder for students to find specific information. E-learning recommender systems help students easily find the learning objects they require, improving the learning experience. The effectiveness of these systems is further improved by integrating deep learning with multi-agent systems.
View Article and Find Full Text PDFIn this manuscript, we introduce a novel methodology for modeling acoustic units within a mobile architecture, employing a synergistic combination of various motivating techniques, including deep learning, sparse coding, and wavelet networks. The core concept involves constructing a Deep Sparse Wavelet Network (DSWN) through the integration of stacked wavelet autoencoders. The DSWN is designed to classify a specific class and discern it from other classes within a dataset of acoustic units.
View Article and Find Full Text PDFComput Intell Neurosci
July 2022
In this paper, a new classification approach of breast cancer based on Fully Convolutional Networks (FCNs) and Beta Wavelet Autoencoder (BWAE) is presented. FCN, as a powerful image segmentation model, is used to extract the relevant information from mammography images. It will identify the relevant zones to model while WAE is used to model the extracted information for these zones.
View Article and Find Full Text PDF