Publications by authors named "Ridha Djemal"

Background: Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism ‎based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN).

View Article and Find Full Text PDF

Over the last few decades, brain signals have been significantly exploited for brain-computer interface (BCI) applications. In this paper, we study the extraction of features using event-related desynchronization/synchronization techniques to improve the classification accuracy for three-class motor imagery (MI) BCI. The classification approach is based on combining the features of the phase and amplitude of the brain signals using fast Fourier transform (FFT) and autoregressive (AR) modeling of the reconstructed phase space as well as the modification of the BCI parameters (trial length, trial frequency band, classification method).

View Article and Find Full Text PDF