Glutathione (GSH) is well known to play a crucial role in imparting resistance against various pathogen invasions. Nevertheless, the role of GSH in regulating miRNA-mediated defense response is yet to be explored. To decipher the GSH-mediated regulation of miRNA expression during necrotrophic infection in , wild-type Col-0 and , the transgenic line exhibiting enhanced GSH content, were infected with necrotrophic pathogen plants exhibited enhanced resistance as compared to wild-type.
View Article and Find Full Text PDFGlutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions.
View Article and Find Full Text PDFLectin proteins play an important role in biotic and abiotic stress responses in plants. Although the rice lectin protein Osr40c1 has been reported to be regulated by drought stress, the mechanism of its drought tolerance activity has not been studied so far. In this study, it is shown that expression of the Osr40c1 gene correlates with the drought tolerance potential of various rice cultivars.
View Article and Find Full Text PDFPlant developmental biology is associated with various gene regulatory pathways involved in different phases of their life cycle. In course of development, growth and differentiation of different organs in plants are regulated by specific sets of gene expression. With the advances in genomic and bioinformatic techniques, particularly high-throughput sequencing technology, many transcriptional units with no protein-coding potential have been discovered.
View Article and Find Full Text PDFThe involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione.
View Article and Find Full Text PDFPodophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P.
View Article and Find Full Text PDFThe leaf spot disease of Mentha arvensis, caused by Alternaria alternata, is a devastating foliar disease worldwide and leads to considerable economic losses. In this investigation, 2-dimensional gel electrophoresis (2-DE) was used to identify the membrane proteins potentially involved in M. arvensis - A.
View Article and Find Full Text PDFGlutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored.
View Article and Find Full Text PDFSeveral signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules.
View Article and Find Full Text PDFThe involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens.
View Article and Find Full Text PDFThe contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta.
View Article and Find Full Text PDFThe contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress.
View Article and Find Full Text PDFThe role of glutathione (GSH) in plant defense is an established fact. However, the association of GSH with other established signaling molecules within the defense signaling network remains to be evaluated. Previously we have shown that GSH is involved in defense signaling network likely through NPR1-dependent salicylic acid (SA)-mediated pathway.
View Article and Find Full Text PDFBackground: The Himalayan or Indian Mayapple (Podophyllum hexandrum Royle) produces podophyllotoxin, which is used in the production of semisynthetic anticancer drugs. High throughput transcriptome sequences or genomic sequence data from the Indian Mayapple are essential for further understanding of the podophyllotoxin biosynthetic pathway.
Results: 454 pyrosequencing of a P.
Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis.
View Article and Find Full Text PDFUnlabelled: The genus Mentha has been widely used in food, flavor, culinary, cosmetic and pharmaceutical industries. Substantial damage to this crop happened regularly due to environmental stresses like metal toxicity and pathogen attack. Here, an approach has been taken to raise transgenic mint over-expressing γ-glutamyl-cysteine synthetase (γ-ECS), the rate-limiting enzyme of GSH biosynthesis, resulted enhanced GSH content and its in planta expression confers significant tolerance towards abiotic/biotic stresses viz.
View Article and Find Full Text PDF