Front Cell Dev Biol
September 2024
Organelle contact sites are regions where two heterologous membranes are juxtaposed by molecular tethering complexes. These contact sites are important in inter-organelle communication and cellular functional integration. However, visualizing these minute foci and identifying contact site proteomes have been challenging.
View Article and Find Full Text PDFContact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST.
View Article and Find Full Text PDFContact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST.
View Article and Find Full Text PDFIschemic retinopathies including diabetic retinopathy are major causes of blindness. Although neurons and Müller glia are recognized as important regulators of reparative and pathologic angiogenesis, the role of mononuclear phagocytes (MPs) - particularly microglia, the resident retinal immune cells - is unclear. Here, we found MP activation in human diabetic retinopathy, especially in neovessels from human neovascular membranes in proliferative retinopathy, including TNF-α expression.
View Article and Find Full Text PDFThe size of plants is largely determined by growth of the stem. Stem elongation is stimulated by gibberellic acid. Here we show that internode stem elongation in rice is regulated antagonistically by an 'accelerator' and a 'decelerator' in concert with gibberellic acid.
View Article and Find Full Text PDFMost plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, (), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation.
View Article and Find Full Text PDFWater submergence is an environmental factor that limits plant growth and survival. Deepwater rice () adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses.
View Article and Find Full Text PDFMoso bamboo (Phyllostachys edulis) is a temperate grass species with a tree-like habitus and an unusual reproduction strategy. While flowering is irregular and infrequent, new clonal bamboo shoots are established from an underground rhizome network during the spring season. In our previous study, we performed transcriptome analyses using bamboo shoot buds to understand the initiation of bamboo stem elongation.
View Article and Find Full Text PDFGrowth and development are tightly co-ordinated events in the lifetime of living organisms. In temperate bamboo plants, spring is the season when environmental conditions are suitable for the emergence of new shoots. Previous studies demonstrated that bamboo plants undergo an energy-consuming 'fast stem growth' phase.
View Article and Find Full Text PDFDomestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes.
View Article and Find Full Text PDFFlowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review.
View Article and Find Full Text PDFA long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns.
View Article and Find Full Text PDFAs an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice variety Kasalath about a decade ago.
View Article and Find Full Text PDFThe major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted.
View Article and Find Full Text PDFMarker-assisted breeding is a very useful tool for breeders but still lags behind its potential because information on the effect of quantitative trait loci (QTLs) in different genetic backgrounds and ideal molecular markers are unavailable. Here, we report on some first steps toward the validation and application of the major rice QTL Phosphate uptake 1 (Pup1) that confers tolerance of phosphorus (P) deficiency in rice (Oryza sativa L.).
View Article and Find Full Text PDFDrought-induced growth arrest is a major cause of yield loss in crops and is mediated in part by abscisic acid (ABA). The aim of this study was to identify the cell types targeted by ABA during arrest. As transcription factors ABI3 and ABI5 are essential for ABA-induced growth arrest in Arabidopsis, blast was used to identify OsVP1 and OsABF1 as their structural orthologues in rice (Oryza sativa), and employed RNA in situ hybridization to reveal the cell types accumulating the corresponding transcripts in response to ABA.
View Article and Find Full Text PDFHybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC).
View Article and Find Full Text PDF