Cytochrome P450 mono-oxygenases (P450) are versatile enzymes which play essential roles in C-source assimilation, secondary metabolism, and in degradations of endo- and exogenous xenobiotics. In humans, several P450 isoforms constitute the largest part of phase I metabolizing enzymes and catalyze oxidation reactions which convert lipophilic xenobiotics, including drugs, to more water soluble species. Recombinant human P450s and microorganisms are applied in the pharmaceutical industry for the synthesis of drug metabolites for pharmacokinetics and toxicity studies.
View Article and Find Full Text PDFThe three strains DSM 40041 DSM 535, and DSM 40063 were described to selectively oxyfunctionalize several drugs. Here, we present their draft genomes to unravel their gene sets encoding promising cytochrome P450 monooxygenases associated with the generation of drug metabolites.
View Article and Find Full Text PDFThis work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap - high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation.
View Article and Find Full Text PDFAttempts to alter the guanine specificity of ribonuclease T1 (RNase T1) by rational or random mutagenesis have failed so far. The RNase T1 variant RV (Lys41Glu, Tyr42Phe, Asn43Arg, Tyr45Trp, and Glu46Asn) designed by combination of a random and a rational mutagenesis approach, however, exhibits a stronger preference toward adenosine residues than wild-type RNase T1. Steady state kinetics of the cleavage reaction of the two dinucleoside phosphate substrates adenylyl-3',5'-cytidine and guanylyl-3',5'-cytidine revealed that the ApC/GpC ratio of the specificity coefficient (k(cat)/K(m)) was increased approximately 7250-fold compared to that of the wild-type.
View Article and Find Full Text PDFAlthough ribonuclease T1 (RNase T1) is one of the best-characterized proteins with respect to structure and enzymatic action, numerous attempts at altering the specificity of the enzyme to cleave single-stranded RNA at the 3'-side of adenylic instead of guanylic residues by rational approaches have failed so far. Recently we generated and characterized the RNase T1 variant RV with a 7200-fold increase in adenylyl-3',5'-cytidine (ApC)/guanylyl-3',5'-cytidine (GpC) preference, with the guanine-binding loop changed from 41-KYNNYE-46 (wt) to 41-EFRNWN-46. Now we have introduced the asparagine residue at position 46 of the wild-type enzyme as a single-point mutation in variant E46N and in combination with the Y45W exchange also occurring in RV.
View Article and Find Full Text PDF