Multidimensional liquid chromatography is the mainstay separation technique used for shotgun proteomic analyses. The application of a multiple-fraction concatenation (MFC) strategy can result in a more disperse and consistent peptide elution profile across different fractions, when compared with a conventional strategy. Herein, we present the first automated online RP-RP platform implementing an MFC strategy to facilitate robust, unattended, routine proteomic analyses.
View Article and Find Full Text PDFThe molecular pathophysiology of corticosteroid-induced ocular hypertension (CIH) is not well understood. To determine the biological mechanisms of CIH, this study investigated protein expression profiles of human trabecular meshwork (hTM) cells in response to dexamethasone and prednisolone treatment. Both discovery-based sequential windowed data independent acquisition of the total high-resolution mass spectra (SWATH-MS) and targeted based high resolution multiple reaction monitoring (MRM-HR) confirmation were applied using a hybrid quadrupole-time-of-flight mass spectrometer.
View Article and Find Full Text PDFLead (Pb) pollution is a growing environment problem that continuously threatens the productivity of crops. To understand the molecular mechanisms of plant adaptation to Pb toxicity, we examined proteome changes in Arabidopsis seedlings following Pb treatment by SWATH-MS, a label-free quantitative proteomic platform. We identified and quantified the expression of 1719 proteins in water- and Pb-treated plants.
View Article and Find Full Text PDFAn automatable, robust, high-performance online multidimensional liquid chromatography (MDLC) platform comprising of pH 10 reversed-phase (RP), strong cation exchange (SCX), and pH 2 RP separation stages has been integrated into a modified commercial off-the-shelf LC instrument with a simple rewiring, enabling accelerated routine qualitative and quantitative proteomics analyses. This system has been redesigned with a dual-trap column configuration to improve the throughput by greatly decreasing the system idle time. The performance of this new design has been benchmarked through analysis of the total lysate of S.
View Article and Find Full Text PDFA novel fully automatable two-dimensional liquid chromatography (2DLC) platform has been integrated into a modified commercial off-the-shelf LC instrument, incorporating porous graphitic carbon (PGC) separation and conventional low-pH reversed-phase (RP) separation for both proteomics and N-glycomics analyses; the dual-trap column configuration of this platform offers desirable high-throughput analyses with almost no idle time, in addition to a miniaturized setup and simplified operation. The total run time per analysis was only 19 h when using eight PGC fractions for unattended large-scale qualitative and quantitative proteomic analyses; the identification of 2678 nonredundant proteins and 11,984 unique peptides provided one of the most comprehensive proteome data sets for primary cerebellar granule neurons (CGNs). The effect of pH on the PGC column was investigated for the first time to improve the hydrophobic peptide coverage; the performance of the optimized system was first benchmarked using tryptic digests of Saccharomyces cerevisiae cell lysates and then evaluated through duplicate analyses of Macaca fascicularis cerebral cortex lysates using isobaric tags for relative and absolute quantitation (iTRAQ) technology.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2012
In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [Cu(II)(terpy)(p)M](·2+) and [Co(III)(salen)(p)M](·+) [(p)M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N'-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ((p)M(·+)) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H(3)PO(4)](·+) species through phosphate ester bond cleavage. The CID spectra of the (p)M(·+) species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain.
View Article and Find Full Text PDFWe have developed a fully automatable two-dimensional liquid chromatography platform for shotgun proteomics analyses based on the online coupling of hydrophilic interaction liquid chromatography (HILIC) - using a nonionic type of TSKgel Amide 80 at either pH 6.8 (neutral) or 2.7 (acidic) - with conventional low-pH reversed-phase chromatography.
View Article and Find Full Text PDFIn this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.
View Article and Find Full Text PDFHerein, we describe the development of a fully automatable technology that features online coupling of high-pH RP separation with conventional low-pH RP separation in a two-dimensional capillary liquid chromatography (2-D LC) system for shotgun proteomics analyses. The complete analysis comprises 13 separation cycles, each involving transfer of the eluate from the first-dimension, high-pH RP separation onto the second RP dimension for further separation. The solvent strength increases across the 13 fractions (cycles) to elute all peptides for further resolution on the second-dimension, low-pH RP separation, each under identical gradient-elution conditions.
View Article and Find Full Text PDFPreviously, we described an online high-/low-pH RP-RP LC system exhibiting high-throughput, automatability, and performance comparable with that of SCX-RP. Herein, we report a variant of the RP-RP platform, RP-SCX-RP, featuring an additional SCX trap column between the two LC dimensions. The SCX column in combination with the second-dimension RP can be used as an SCX-RP biphasic column for trapping peptides in the eluent from the first RP column.
View Article and Find Full Text PDFExtensive front-end separation is usually required for complex samples in bottom-up proteomics to alleviate the problem of peptide undersampling. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based experiments have particularly higher demands, in terms of the number of duty cycles and the sensitivity, to confidently quantify protein abundance. Strong cation exchange (SCX)/reverse phase (RP) liquid chromatography (LC) is currently used routinely to separate iTRAQ-labeled peptides because of its ability to simultaneously clean up the iTRAQ reagents and byproducts and provide first-dimension separation; nevertheless, the low resolution of SCX means that peptides can be redundantly sampled across fractions, leading to loss of usable duty cycles.
View Article and Find Full Text PDFThe inhibitory mechanism of niacin, which was found in our previous study to effectively reduce acrylamide (AA) formation in both chemical models and fried potato strips, was investigated in the present study. Maillard chemical models containing the amino acid asparagine and glucose with or without niacin were closely examined by liquid chromatography/tandem mass spectrometry. Comparison of the chemical profiles revealed two additional peaks in models where niacin was present together with the AA precursors, which thus suggests the formation of compounds from reactions between niacin and other chemical species in the model systems.
View Article and Find Full Text PDF