Background: An insecticide screening effort identified N-(4-bromophenyl)-4,6-bis(2,2,2-trifluoroethoxy)-1,3,5-triazine-2-amine as having weak potency against two lepidopteran species, Helicoverpa zea and Spodoptera exigua. A structure-activity relationship study about the trifluoroethoxy substituents and the aniline of this compound was carried out in an effort to improve insecticidal potency.
Results: Initially, a series of analogs bearing various substituents on the aniline were prepared, and the insecticidal potency was evaluated against H.
Background: Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency.
Results: Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)].
Background: Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides.
View Article and Find Full Text PDF