Introduction/aims: Fatiguability and perceived fatigue are common unrelated symptoms in ambulatory individuals with spinal muscular atrophy (SMA). Ratings of perceived exertion (RPE) measures the sense of effort during an activity and has been used as a proxy for fatigue. Relationships between perceived fatigue, fatiguability, and RPE have been described in healthy populations, but the relationship in SMA has not been examined.
View Article and Find Full Text PDFAn NMR method to monitor conformational states of challenging large protein targets is described. The method, which can be used to evaluate distances between two labels and to measure conformational exchange rates, revealed an unanticipated outward-facing state in a glutamate transporter.
View Article and Find Full Text PDFAmong coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl for H). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained.
View Article and Find Full Text PDFCLC secondary active transporters exchange Cl(-) for H(+). Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using (19)F NMR, we show that as [H(+)] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed.
View Article and Find Full Text PDFCLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel.
View Article and Find Full Text PDFA method of docking Ca(2+) ions in proteins with flexible side chains and deformable backbones is proposed. The energy was calculated with the AMBER force field, implicit solvent, and solvent exposure-dependent and distance-dependent dielectric function. Starting structures were generated with Ca(2+) coordinates and side-chain torsions sampled in 1000 A(3) cubes centered at the experimental Ca(2+) positions.
View Article and Find Full Text PDFPhenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs.
View Article and Find Full Text PDF