MicroRNAs (miRNAs) are small non-coding RNAs that are involved in the regulation of major pathways in eukaryotic cells through their binding to and repression of multiple mRNAs. With high-throughput methodologies, various outcomes can be measured that produce long lists of miRNAs that are often difficult to interpret. A common question is: after differential expression or phenotypic screening of miRNA mimics, which miRNA should be chosen for further investigation? Here, we present miRViz (http://mirviz.
View Article and Find Full Text PDFBreast cancer stem cells (bCSCs) have been implicated in tumor progression and therapeutic resistance; however, the molecular mechanisms that define this state are unclear. We have performed two microRNA (miRNA) gain- and loss-of-function screens to identify miRNAs that regulate the choice between bCSC self-renewal and differentiation. We find that micro-RNA (miR)-600 silencing results in bCSC expansion, while its overexpression reduces bCSC self-renewal, leading to decreased in vivo tumorigenicity.
View Article and Find Full Text PDFModularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches.
View Article and Find Full Text PDFPhenotypic screening monitors phenotypic changes induced by perturbations, including those generated by drugs or RNA interference. Currently-used methods for scoring screen hits have proven to be problematic, particularly when applied to physiologically relevant conditions such as low cell numbers or inefficient transfection. Here, we describe the Φ-score, which is a novel scoring method for the identification of phenotypic modifiers or hits in cell-based screens.
View Article and Find Full Text PDFMiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets.
View Article and Find Full Text PDFmAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product- and time-consuming. CE-MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples.
View Article and Find Full Text PDFThe behaviour of cancerous epithelial prostatic cells (PC3) growing on polyelectrolytes (PE) coatings was compared to the behaviour of immortalized normal prostatic cells (PNT-2). The cell behaviour was evaluated and quantified in terms of initial cell attachment, growth, metabolic activity, morphometry, adhesion, apoptosis and stress related gene expression. Both the anionic PSS (poly(sodium 4-styrenesulphonate))-terminated surface and cationic PAH (poly(allylamine hydrochloride))-terminated surfaces were not cytotoxic.
View Article and Find Full Text PDFComputational target fishing is a chemoinformatic method aimed at determining main and secondary targets of bioactive compounds in order to explain their mechanism of action, anticipate potential side effects, or repurpose existing drugs for novel therapeutic indications. Many existing successes in this area have been based on a use of a single computational method to estimate potentially new target-ligand associations. We herewith present an automated workflow using several methods to optimally browse target-ligand space according to existing knowledge on either ligand and target space under investigation.
View Article and Find Full Text PDF