Publications by authors named "Rickesha Bell"

Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a animal is sufficient to worsen colitis in wild-type mice.

View Article and Find Full Text PDF

is a genus of anaerobic, gram-positive bacteria commonly found in mammalian gastrointestinal tracts. Yet, how variations among different strains can impact host health is poorly understood. We present a sp.

View Article and Find Full Text PDF
Article Synopsis
  • Iron deficiency is the most common nutritional issue globally, significantly affected by the gut microbiome and its influence on iron absorption.
  • Blood flow from the intestines to the liver links both iron and microbiome status, with disruptions in either contributing to metabolic diseases like MASLD.
  • Research using mice revealed that the presence of gut microbiota is crucial for maintaining healthy lipid metabolism on a low-iron diet, indicating that gut health, dietary iron, and a specific protein (Mitoferrin2) play vital roles in preventing MASLD.
View Article and Find Full Text PDF

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present.

View Article and Find Full Text PDF

Regulation of the microbiota is critical to intestinal health yet the mechanisms employed by innate immunity remain unclear. Here we show that mice deficient in the C-Type-lectin receptor, Clec12a developed severe colitis, which was dependent on the microbiota. Fecal-microbiota-transplantation (FMT) studies into germfree mice revealed a colitogenic microbiota formed within Clec12a mice that was marked by expansion of the gram-positive organism, .

View Article and Find Full Text PDF

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets.

View Article and Find Full Text PDF

Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IEC) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection.

View Article and Find Full Text PDF

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host.

View Article and Find Full Text PDF

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects 2.5 million people worldwide. Growing evidence suggests that perturbation of the gut microbiota, the dense collection of microorganisms that colonize the gastrointestinal tract, plays a functional role in MS.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that the microbiota plays a significant role in obesity and metabolic syndrome (MetS), highlighting the importance of specific microorganisms, particularly Clostridia, in preventing these conditions.
  • Researchers found that age-related changes in the gut microbiome, including the loss of Clostridia, were linked to obesity, and T cell responses were crucial for protecting against these metabolic issues.
  • Experiments showed that introducing Clostridia to germ-free mice led to decreased lipid absorption and lower body fat, suggesting that maintaining a healthy microbiota can help manage obesity and MetS.
View Article and Find Full Text PDF

Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis.

View Article and Find Full Text PDF

Bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact mammalian health remains unclear. We noted an induction of host immunity when experimentally treating bacterially driven cancer, leading us to test whether bacteriophages alter immune responses.

View Article and Find Full Text PDF

Although socially controlled sex transformation in fishes is well established, the underlying mechanisms are not well understood. Particularly enigmatic is behavioural transformation, in which fish can rapidly switch from exhibiting female to male-typical courtship behaviours following removal of 'supermales'. Bluehead wrasses are a model system for investigating environmental control of sex determination, particularly the social control of sex transformation.

View Article and Find Full Text PDF

Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis.

View Article and Find Full Text PDF

The commensal microbiota has an important impact on host health, which is only beginning to be elucidated. Despite the presence of fungal, archaeal, and viral members, most studies have focused solely on the bacterial microbiota. Antibodies against the yeast are found in some patients with Crohn's disease (CD), suggesting that the mycobiota may contribute to disease severity.

View Article and Find Full Text PDF

The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition.

View Article and Find Full Text PDF