Publications by authors named "Ricken T"

A nanosecond infrared laser (NIRL) was investigated in cutting dental roots. The focus of the investigation was defining the preparation accuracy and registration of thermal effects during laser application. Ten teeth were processed in the root area using a NIRL in several horizontal, parallel incisions to achieve tooth root ablation as in an apicoectomy.

View Article and Find Full Text PDF

Vertebroplasty is a minimally invasive surgical procedure used to treat vertebral fractures, which conventionally involves injecting poly(methyl methacrylate) (PMMA) bone cement into the fractured vertebra. A common risk associated with vertebroplasty is cement leaking out of the vertebra during the injection, which may occur due to a lack of understanding of the complex flow behavior. Therefore, experiments to quantify the cement's flow properties are necessary for understanding and proper handling of the bone cement.

View Article and Find Full Text PDF

Metabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g.

View Article and Find Full Text PDF

Construction during cold weather can lead to freezing accidents in concrete, causing significant hidden threats to the project's performance and safety by affecting the mechanical properties and durability reduction. This study aims to deduce the compressive strength and durability of the concrete containing nano-[Formula: see text] under freezing-thawing cycles with the Caspian seawater curing condition. The specimens were subjected to freezing-thawing cycles according to ASTM C666.

View Article and Find Full Text PDF

Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differential equations.

View Article and Find Full Text PDF

The outcome of vertebroplasty is hard to predict due to its dependence on complex factors like bone cement and marrow rheologies. Cement leakage could occur if the procedure is done incorrectly, potentially causing adverse complications. A reliable simulation could predict the patient-specific outcome preoperatively and avoid the risk of cement leakage.

View Article and Find Full Text PDF

Various studies have been recently conducted aiming at developing more sustainable cementitious systems so that concrete structures may not have a negative effect on the environment and are decomposed. It has been attempted to build sustainable binders by substituting silica fume, cement with fly ash, nano-silica, nano-alumina, and rice husk ash. In this paper, a series of experiments on concrete with different contents of rice husk ash (10%, 15%, and 20%), nano[Formula: see text] (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%), and nano[Formula: see text] (1%, 2%, 3%, 4%) are performed to analyze the durability and mechanical properties of samples under the curing condition of Caspian seawater.

View Article and Find Full Text PDF

MRI-based mathematical and computational modeling studies can contribute to a better understanding of the mechanisms governing cartilage's mechanical performance and cartilage disease. In addition, distinct modeling of cartilage is needed to optimize artificial cartilage production. These studies have opened up the prospect of further deepening our understanding of cartilage function.

View Article and Find Full Text PDF

Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue.

View Article and Find Full Text PDF

Abusive head trauma (AHT) and its most common variant, the shaken baby syndrome (SBS), are predominantly characterized by central nervous system-associated lesions. Relatively little data are available on the value of skeletal and skin injuries for the diagnosis of SBS or AHT. Thus, the present study retrospectively investigated 72 cases of living children diagnosed with the explicit diagnosis of SBS during medico-legal examinations at three German university institutes of legal medicine.

View Article and Find Full Text PDF

MRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function.

View Article and Find Full Text PDF

Visualisation of the groundwater flow and contaminant transport can play a significant role for a better understanding of contaminant fate, which helps decision-makers and contaminated site planners to choose and implement the best remediation strategies. In this paper, a microfluidic chip coated with nanoclay was developed to mimic soil behaviour. Scanning electron microscopy (SEM) images and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that all the features and surfaces are coated with nanoclay.

View Article and Find Full Text PDF

The simulation-optimisation models of groundwater and contaminant transport can be a powerful tool in the management of groundwater resources and remediation design. In this study, using Multiquadratic Radial Basis Function (MRBF) a coupled groundwater flow and reactive transport of contaminant and oxidant was developed in the framework of the Meshfree method. The parameter analysis has determined the optimum shape parameter (0.

View Article and Find Full Text PDF

Medical imaging performed in vivo captures geometries under Donnan osmotic loading, even when the articulating joint is otherwise mechanically unloaded. Hence patient-specific finite element (FE) models constructed from such medical images of cartilage represent osmotically induced prestretched/prestressed states. When applying classical modeling approaches to patient-specific simulations of cartilage a theoretical inconsistency arises: the in-vivo imaged geometry (used to construct the model) is not an unloaded, stress-free reference configuration.

View Article and Find Full Text PDF

The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant.

View Article and Find Full Text PDF

Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently.

View Article and Find Full Text PDF

The remarkable mechanical properties of cartilage derive from an interplay of isotropically distributed, densely packed and negatively charged proteoglycans; a highly anisotropic and inhomogeneously oriented fiber network of collagens; and an interstitial electrolytic fluid. We propose a new 3D finite strain constitutive model capable of simultaneously addressing both solid (reinforcement) and fluid (permeability) dependence of the tissue's mechanical response on the patient-specific collagen fiber network. To represent fiber reinforcement, we integrate the strain energies of single collagen fibers-weighted by an orientation distribution function (ODF) defined over a unit sphere-over the distributed fiber orientations in 3D.

View Article and Find Full Text PDF

This study focuses on a two-scale, continuum multicomponent model for the description of blood perfusion and cell metabolism in the liver. The model accounts for a spatial and time depending hydro-diffusion-advection-reaction description. We consider a solid-phase (tissue) containing glycogen and a fluid-phase (blood) containing glucose as well as lactate.

View Article and Find Full Text PDF

We propose a new 3D biphasic constitutive model designed to incorporate structural data on the sample/patient-specific collagen fiber network. The finite strain model focuses on the load-bearing morphology, that is, an incompressible, poroelastic solid matrix, reinforced by an inhomogeneous, dispersed fiber fabric, saturated with an incompressible fluid at constant electrolytic conditions residing in strain-dependent pores of the collagen-proteoglycan solid matrix. In addition, the fiber network of the solid influences the fluid permeability and an intrafibrillar portion that cannot be 'squeezed out' from the tissue.

View Article and Find Full Text PDF

Cartilage is a multi-phase material composed of fluid and electrolytes (68-85% by wet weight), proteoglycans (5-10% by wet weight), chondrocytes, collagen fibres and other glycoproteins. The solid phase constitutes an isotropic proteoglycan gel and a fibre network of predominantly type II collagen, which provides tensile strength and mechanical stiffness. The same two components control diffusion of the fluid phase, e.

View Article and Find Full Text PDF

The 3-D morphology of chicken articular cartilage was quantified using multiphoton microscopy (MPM) for use in continuum-mechanical modeling. To motivate this morphological study we propose aspects of a new, 3-D finite strain constitutive model for articular cartilage focusing on the essential load-bearing morphology: an inhomogeneous, poro-(visco)elastic solid matrix reinforced by an anisotropic, (visco)elastic dispersed fiber fabric which is saturated by an incompressible fluid residing in strain-dependent pores. Samples of fresh chicken cartilage were sectioned in three orthogonal planes and imaged using MPM, specifically imaging the collagen fibers using second harmonic generation.

View Article and Find Full Text PDF

Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer.

View Article and Find Full Text PDF

This study formulates a theory for multigenerational interstitial growth of biological tissues whereby each generation has a distinct reference configuration determined at the time of its deposition. In this model, the solid matrix of a growing tissue consists of a multiplicity of intermingled porous permeable bodies, each of which represents a generation, all of which are constrained to move together in the current configuration. Each generation's reference configuration has a one-to-one mapping with the master reference configuration, which is typically that of the first generation.

View Article and Find Full Text PDF

Liver resection can lead to focal outflow obstruction due to transection of hepatic veins. Outflow obstruction may cause additional damage to the small remnant liver. Drainage of the obstructed territories is reestablished via dilatation of sinusoids.

View Article and Find Full Text PDF