We address several questions in reduced versus extended networks via the elimination or addition of intermediate complexes in the framework of chemical reaction networks with mass-action kinetics. We clarify and extend advances in the literature concerning multistationarity in this context, mainly from Feliu and Wiuf (J R Soc Interface 10:20130484, 2013), Sadeghimanesh and Feliu (Bull Math Biol 81:2428-2462, 2019), Pérez Millán and Dickenstein (SIAM J Appl Dyn Syst 17(2):1650-1682, 2018), Dickenstein et al. (Bull Math Biol 81:1527-1581, 2019).
View Article and Find Full Text PDFThe distributive sequential n-site phosphorylation/dephosphorylation system is an important building block in networks of chemical reactions arising in molecular biology, which has been intensively studied. In the nice paper of Wang and Sontag (2008) it is shown that for certain choices of the reaction rate constants and total conservation constants, the system can have 2[n/2] +1 positive steady states (that is, n+1 positive steady states for n even and n positive steady states for n odd). In this paper we give open parameter regions in the space of reaction rate constants and total conservation constants that ensure these number of positive steady states, while assuming in the modeling that roughly only 1/4 of the intermediates occur in the reaction mechanism.
View Article and Find Full Text PDF