Publications by authors named "Rick Lyons"

Unlabelled: Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed "nutritional immunity." Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source.

View Article and Find Full Text PDF

Inhalational anthrax is caused by inhalation of Bacillus anthracis spores. The ability of B. anthracis to cause anthrax is attributed to the plasmid-encoded A/B-type toxins, edema toxin (edema factor and protective antigen) and lethal toxin (lethal factor and protective antigen), and a poly-d-glutamic acid capsule.

View Article and Find Full Text PDF

CpG DNA is a potent activator of the innate immune system. Here the protective effects of CpG DNA are assessed against the facultative intracellular pathogen Francisella tularensis. Dosing of mice with CpG DNA provided protection against disease caused by F.

View Article and Find Full Text PDF

Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA). We previously generated murine IgG3 monoclonal antibodies (mAbs) to γdPGA that were protective in a murine model of pulmonary anthrax.

View Article and Find Full Text PDF

Autophagy is a cell biological pathway affecting immune responses. In vitro, autophagy acts as a cell-autonomous defense against Mycobacterium tuberculosis, but its role in vivo is unknown. Here we show that autophagy plays a dual role against tuberculosis: antibacterial and anti-inflammatory.

View Article and Find Full Text PDF

The development of therapeutics against biothreats requires that we understand the pathogenesis of the disease in relevant animal models. The rabbit model of inhalational anthrax is an important tool in the assessment of potential therapeutics against Bacillus anthracis. We investigated the roles of B.

View Article and Find Full Text PDF

In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-water emulsion, PA displayed on bacteriophage T4 by the intramuscular route, and PA mixed with Escherichia coli heat-labile enterotoxin administered by the needle-free transcutaneous route. Three of the vaccine formulations administered by the intramuscular or the transcutaneous route as a three-dose regimen induced 100% protection in the rabbit model.

View Article and Find Full Text PDF

Unlabelled: Detection of microbial antigens in clinical samples can lead to rapid diagnosis of an infection and administration of appropriate therapeutics. A major barrier in diagnostics development is determining which of the potentially hundreds or thousands of antigens produced by a microbe are actually present in patient samples in detectable amounts against a background of innumerable host proteins. In this report, we describe a strategy, termed in vivo microbial antigen discovery (InMAD), that we used to identify circulating bacterial antigens.

View Article and Find Full Text PDF

Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability.

View Article and Find Full Text PDF

Pneumonic tularemia is a life-threatening disease caused by inhalation of the highly infectious intracellular bacterium Francisella tularensis. The most serious form of the disease associated with the type A strains can be prevented in experimental animals through vaccination with the attenuated live vaccine strain (LVS). The protection is largely cell mediated, but the contribution of antibodies remains controversial.

View Article and Find Full Text PDF

One of the two essential virulence factors of Bacillus anthracis is the poly-γ-D-glutamic acid (γDPGA) capsule. Five γDPGA-specific antibody antigen-binding fragments (Fabs) were generated from immunized chimpanzees. The two selected for further study, Fabs 11D and 4C, were both converted into full-length IgG1 and IgG3 mAbs having human IgG1 or IgG3 constant regions.

View Article and Find Full Text PDF

Background: The pathogenesis of Francisella tularensis, the causative agent of tularemia, has been primarily characterized in mice. However, the high degree of sensitivity of mice to bacterial challenge, especially with the human virulent strains of F. tularensis, limits this animal model for screening of defined attenuated vaccine candidates for protection studies.

View Article and Find Full Text PDF

In the current study, we examined the regulatory interactions of a serine/threonine phosphatase (BA-Stp1), serine/threonine kinase (BA-Stk1) pair in Bacillus anthracis. B. anthracis STPK101, a null mutant lacking BA-Stp1 and BA-Stk1, was impaired in its ability to survive within macrophages, and this correlated with an observed reduction in virulence in a mouse model of pulmonary anthrax.

View Article and Find Full Text PDF

Acute viral and bacterial infections in the lower respiratory tract are major causes of morbidity and mortality worldwide. The proper study of pulmonary infections requires interdisciplinary collaboration among physicians and biomedical scientists to develop rational hypotheses based on clinical studies and to test these hypotheses in relevant animal models. Animal models for common lung infections are essential to understand pathogenic mechanisms and to clarify general mechanisms for host protection in pulmonary infections, as well as to develop vaccines and therapeutics.

View Article and Find Full Text PDF

The licensed smallpox vaccine, comprised of infectious vaccinia, is no longer popular as it is associated with a variety of adverse events. Safer vaccines have been explored such as further attenuated viruses and component designs. However, these alternatives typically provide compromised breadth and strength of protection.

View Article and Find Full Text PDF

Pneumonic tularemia caused by inhalation of the type A strains of Francisella tularensis is associated with high morbidity and mortality in humans. The only vaccine known to protect humans against this disease is the attenuated live vaccine strain (LVS), but it is not currently registered for human use. To develop a new generation of vaccines, multiple animal models are needed that reproduce the human response to F.

View Article and Find Full Text PDF

Latex agglutination has been used to detect capsular polysaccharides from a variety of bacteria in body fluids. A latex agglutination assay was constructed for detection of the poly-gamma-D-glutamic acid (gammaDPGA) capsular polypeptide of Bacillus anthracis in serum from animal models of pulmonary anthrax. The assay was able to detect gammaDPGA in serum from infected animals at concentrations of 100 to 200 ng/mL.

View Article and Find Full Text PDF

Parenteral and respiratory vaccinations with the intracellular bacterium Francisella tularensis have been studied using the live vaccine strain (LVS) in a mouse model, and spleen cells from immune mice are often used for immunological studies. However, mechanisms of host immunological responses may be different in nonlymphoid organs that are important sites of infection, such as lung and liver. Using parenteral (intradermal) or respiratory (cloud aerosol) vaccination, here we examine the functions of resulting LVS-immune liver or lung cells, respectively.

View Article and Find Full Text PDF

Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA).

View Article and Find Full Text PDF

Bacillus anthracis strains harboring virulence plasmid pXO1 that encodes the toxin protein protective antigen (PA), lethal factor, and edema factor and virulence plasmid pXO2 that encodes capsule biosynthetic enzymes exhibit different levels of virulence in certain animal models. In the murine model of pulmonary infection, B. anthracis virulence was capsule dependent but toxin independent.

View Article and Find Full Text PDF

Bacillus anthracis possesses three primary virulence factors: capsule, lethal toxin (LT), and edema toxin (ET). Dendritic cells (DCs) are critical to innate and acquired immunity and represent potential targets for these factors. We examined the ability of B.

View Article and Find Full Text PDF

This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame.

View Article and Find Full Text PDF

In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B.

View Article and Find Full Text PDF

Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages.

View Article and Find Full Text PDF