Publications by authors named "Rick Klug"

Objectives: Many current subcutaneous (SC) biologic therapies may require >1 mL volume or have increased viscosity, necessitating new delivery system approaches. This study evaluated 2-mL large-volume autoinjector (LVAI) delivery performance across varying solution viscosities and design inputs to assess the design space and identify configurations that produce practical injection times.

Methods: Investigational LVAI delivery duration and volume, depot location, and tissue effects were examined in both air and in vivo models across various pre-filled syringe (PFS) cannula types (27 G Ultra-thin wall [UTW], 27 G special thin wall [STW], or 29 G thin-wall [TW]), drive spring forces (SF or SF), and Newtonian solutions (2.

View Article and Find Full Text PDF

A prototype reusable large-volume (2 mL) autoinjector (LVAI) was designed to compare injection performance of a novel 27 gauge ultra-thin wall (UTW) pre-filled syringe (PFS) cannula (8 mm external cannula length, 14.4 mm total needle length) against an existing 27 gauge special thin wall (STW) PFS cannula (12.7 mm external cannula length, 19 mm total needle length) across a range of injectate viscosities (2.

View Article and Find Full Text PDF

Background: Limited published data exists quantifying the influence of human factors (HF) and pen needle (PN) design on delivery outcomes of pen injection systems. This preclinical in vivo study examines the impact of PN hub design and applied force against the skin during injection on needle penetration depth (NPD).

Method: To precisely locate injection depth, PN injections (20 µl; 2 IU, U-100 volume equivalent) of iodinated contrast agent were administered to the flank of Yorkshire swine across a range of clinically relevant application forces against the skin (0.

View Article and Find Full Text PDF

In this study, the temperature profiles of insulin pump reservoirs during normal wear conditions across multiple seasons were characterized. Thermocouples secured in reservoirs filled with insulin diluent were loaded in infusion pumps worn by volunteers. Reservoir and ambient environmental temperature data and activity levels were logged during the course of normal daily activities in February (winter), April (spring), and August (summer).

View Article and Find Full Text PDF