The role of the microbiome in shaping the host's phenotype has emerged as a critical area of investigation, with implications in ecology, evolution, and host health. The complex and dynamic interactions involving plants and their diverse rhizospheres' microbial communities are influenced by a multitude of factors, including but not limited to soil type, environment, and plant genotype. Understanding the impact of these factors on microbial community assembly is key to yielding host-specific and robust benefits for plants, yet it remains challenging.
View Article and Find Full Text PDFHuman activities have been altering the flora and fauna across the planet. Distributions and the diversity of species, and the phenotypes of individuals in those species are changing. New England with its rapidly changing human demographics is an ideal place to investigate these temporal changes in the habitat.
View Article and Find Full Text PDFWeedy dandelions have a worldwide distribution and thrive in urban environments despite a lack of sexual reproduction throughout most of its range. North American dandelions, introduced from Eurasia, are believed to be primarily, if not exclusively, apomictic triploids. In some European populations, apomicts co-occur with diploid sexual individuals and hybridizations can create genetically unique apomicts, which may subsequently disperse and establish new populations globally.
View Article and Find Full Text PDFPlant invasions are recognized as major drivers of ecosystem change, yet the precise cause of these invasions remains unknown for many species. Frequency and modes of introductions during the first, transport and colonization, stages of the invasion process as well as phenotypic changes due to plasticity or changing genetic diversity and adaptation during later establishment and expansion stages can all influence the "success" of invasion. Here, we examine some of these factors in, and the origin of, a very successful weed, (chicory) which was introduced to North America in the 18th century and which now can be found in all 48 continental U.
View Article and Find Full Text PDFThe natural history of introduced species is often unclear due to a lack of historical records. Even when historical information is readily available, important factors of the invasions such as genetic bottlenecks, hybridization, historical relationships among populations and adaptive changes are left unknown. In this study, we developed a set of nuclear, simple sequence repeat markers and used these to characterize the genetic diversity and population structure among native (Eurasian) and non-native (North and South American) populations of Centaurea solstitialis L.
View Article and Find Full Text PDFSoil communities associated with specific plant species affect individual plants' growth and competitive ability. Limited evidence suggests that unique soil communities can also differentially influence growth and competition at the ecotype level. Previous work with Arabidopsis thaliana has shown that accessions produce distinct and reproducible rhizosphere bacterial communities, with significant differences in both species composition and relative abundance.
View Article and Find Full Text PDFWe developed 16 microsatellite markers in Cordia bifurcata, a Central and South American shrub. The markers show low polymorphism in C. bifurcata, a species suspected of self-fertilization or apomixis.
View Article and Find Full Text PDFThe development of universal markers that can be assayed across taxa, but which are polymorphic within taxa, can facilitate both comparative map-based studies and phylogenetic analyses. Here we describe the development of such markers for use in the Asteraceae, which includes the crops lettuce, sunflower, and safflower as well as dozens of locally important crop and weed species. Using alignments of a conserved orthologous set (COS) of ESTs from lettuce and sunflower and genomic sequences of Arabidopsis, we designed a suite of primer pairs that are conserved across species, but which are predicted to flank introns.
View Article and Find Full Text PDFAlthough fundamental to the study of invasion mechanisms, the relationship between mode of reproduction and plant invasion is not well understood. Fallopia japonica (Japanese knotweed), a highly aggressive invasive plant in both Europe and North America, serves as a model species for examining this relationship. In Britain, F.
View Article and Find Full Text PDFFallopia japonica (Japanese knotweed, Polygonaceae) is a well-known East Asian perennial that is established throughout the U.S. and Europe.
View Article and Find Full Text PDFComparative genomic studies among highly divergent species have been problematic because reduced gene similarities make orthologous gene pairs difficult to identify and because colinearity is expected to be low with greater time since divergence from the last common ancestor. Nevertheless, synteny between divergent taxa in several lineages has been detected over short chromosomal segments. We have examined the level of synteny between the model species Arabidopsis thaliana and species in the Compositae, one of the largest and most diverse plant families.
View Article and Find Full Text PDFPlant resistance to many types of pathogens and pests can be achieved by the presence of disease resistance (R) genes. The nucleotide binding site-leucine rich repeat (NBS-LRR) class of R-genes is the most commonly isolated class of R-genes and makes up a super-family, which is often arranged in the genome as large multi-gene clusters. The NBS domain of these genes can be targeted by polymerase chain reaction (PCR) amplification using degenerate primers.
View Article and Find Full Text PDFAn RFLP genomic subtraction was used to isolate male-specific sequences in the species Silene latifolia. One isolated fragment, SLP2, shares similarity to a portion of the Activator (Ac) transposase from Zea mays and to related proteins from other plant species. Southern blot analysis of male and female S.
View Article and Find Full Text PDFThe diversity and population structure of potato landraces (Solanum spp.) within their center of domestication was studied using isozyme surveys of four polymorphic loci. The objective in assessing the distribution of genetic diversity was to assist in planning conservation strategies of crop genetic resources that are threatened by genetic erosion.
View Article and Find Full Text PDF