Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.
View Article and Find Full Text PDFIdentification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families with ARNSHL. Agilent SureSelect Human All Exon 50 Mb kits and an Illumina Hiseq2000 instrument were used.
View Article and Find Full Text PDFForward genetic screens in Drosophila melanogaster using ethyl methanesulfonate (EMS) mutagenesis are a powerful approach for identifying genes that modulate specific biological processes in an in vivo setting. The mapping of genes that contain randomly-induced point mutations has become more efficient in Drosophila thanks to the maturation and availability of many types of genetic tools. However, classic approaches to gene mapping are relatively slow and ultimately require extensive Sanger sequencing of candidate chromosomal loci.
View Article and Find Full Text PDFPolg mtDNA mutator mice are important models for investigating the role of acquired mtDNA mutations in aging. Despite extensive study, there remains little consensus on either the etiology of the progeroid phenotype or the mtDNA mutation spectrum induced by disrupted polymerase-γ function. To investigate the latter, we have developed a novel, pragmatic approach we term "Mito-seq," applying next-generation sequencing to enriched, native mtDNA.
View Article and Find Full Text PDF