Background Chest radiography may play an important role in triage for coronavirus disease 2019 (COVID-19), particularly in low-resource settings. Purpose To evaluate the performance of an artificial intelligence (AI) system for detection of COVID-19 pneumonia on chest radiographs. Materials and Methods An AI system (CAD4COVID-XRay) was trained on 24 678 chest radiographs, including 1540 used only for validation while training.
View Article and Find Full Text PDFThere is a growing interest in the automated analysis of chest X-Ray (CXR) as a sensitive and inexpensive means of screening susceptible populations for pulmonary tuberculosis. In this work we evaluate the latest version of CAD4TB, a commercial software platform designed for this purpose. Version 6 of CAD4TB was released in 2018 and is here tested on a fully independent dataset of 5565 CXR images with GeneXpert (Xpert) sputum test results available (854 Xpert positive subjects).
View Article and Find Full Text PDFBackground: The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia.
Objective: To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to evaluate its accuracy in identifying World Health Organization (WHO)-defined chest radiograph primary-endpoint pneumonia compared to a consensus interpretation.
Purpose: Symmetry is an important feature of human anatomy and the absence of symmetry in medical images can indicate the presence of pathology. Quantification of image symmetry can then be used to improve the automatic analysis of medical images.
Methods: A method is presented that computes both local and global symmetry in 2D medical images.
Lack of human resources and radiological interpretation expertise impair tuberculosis (TB) screening programmes in TB-endemic countries. Computer-aided detection (CAD) constitutes a viable alternative for chest radiograph (CXR) reading. However, no automated techniques that exploit the additional clinical information typically available during screening exist.
View Article and Find Full Text PDFThe major advantage of multiple-instance learning (MIL) applied to a computer-aided detection (CAD) system is that it allows optimizing the latter with case-level labels instead of accurate lesion outlines as traditionally required for a supervised approach. As shown in previous work, a MIL-based CAD system can perform comparably to its supervised counterpart considering complex tasks such as chest radiograph scoring in tuberculosis (TB) detection. However, despite this remarkable achievement, the uncertainty inherent to MIL can lead to a less satisfactory outcome if analysis at lower levels (e.
View Article and Find Full Text PDFBackground: Chest radiography to diagnose and screen for pulmonary tuberculosis has limitations, especially due to inter-reader variability. Automating the interpretation has the potential to overcome this drawback and to deliver objective and reproducible results. The CAD4TB software is a computer-aided detection system that has shown promising preliminary findings.
View Article and Find Full Text PDFTo reach performance levels comparable to human experts, computer-aided detection (CAD) systems are typically optimized following a supervised learning approach that relies on large training databases comprising manually annotated lesions. However, manually outlining those lesions constitutes a difficult and time-consuming process that renders detailedly annotated data difficult to obtain. In this paper, we investigate an alternative approach, namely multiple-instance learning (MIL), that does not require detailed information for optimization.
View Article and Find Full Text PDF