A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height.
View Article and Find Full Text PDFTitanium dioxide (titania) surfaces produced by atomic layer deposition (ALD) are suitable for surfactant adsorption and surface force measurements. Adsorption isotherms for cetyltrimethylammonium bromide (CTAB) on ALD titanium dioxide surfaces were measured using optical reflectometry (OR), and surface force measurements between ALD titanium dioxide surfaces in aqueous CTAB solutions were measured using the colloid probe technique at different pH and electrolyte concentrations. Measurements were performed at a range of concentrations below and above the common intersection point (CIP) where adsorption is dominated by electrostatic and hydrophobic interactions, respectively.
View Article and Find Full Text PDFSurface force measurements between titania surfaces in electrolyte solutions have previously revealed an unexplained long-range repulsive force at high pH, not described by Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Here, the surface forces between titania surfaces produced by atomic layer deposition (ALD) and cleaned using a variety of methods have been measured to determine the influence of the cleaning protocol on the measured forces and test the hypothesis that water plasma cleaning of the surface results in non-DLVO forces at high pH. For argon plasma and water plasma cleaned surfaces, a diffuse double layer repulsion and van der Waals attraction is observed near the isoelectric point.
View Article and Find Full Text PDFThe structure of the dye layer adsorbed on the titania substrate in a dye-sensitized solar cell is of fundamental importance for the function of the cell, since it strongly influences the injection of photoelectrons from the excited dye molecules into the titania substrate. The adsorption isotherms of the N719 ruthenium-based dye were determined both with a direct method using the depth profiling technique neutral impact collision ion scattering spectroscopy (NICISS) and with the standard indirect solution depletion method. It is found that the dye layer adsorbed on the titania surface is laterally inhomogeneous in thickness and there is a growth mechanism already from low coverage levels involving a combination of monolayers and multilayers.
View Article and Find Full Text PDFAdsorbed low molecular weight charged molecules are known to give rise to a range of surface forces that affect the rheological behavior of oxide dispersions. The behavior of dicarboxylic acid bolaform compounds in alumina slurry was investigated to determine the influence of the molecular structure on the nanoscale interactions between alumina surfaces and on the macroscopic properties of the slurry. The surface forces in dispersions and between a single particle and a flat surface were characterized by yield stress and atomic force microscopy (AFM) respectively.
View Article and Find Full Text PDF