Publications by authors named "Richtera L"

Background: Sulphur (S) deficiency has emerged in recent years in European soils due to the decreased occurrence of acid rains. Elemental sulphur (S) is highly beneficial as a source of S in agriculture, but it must be oxidized to a plant-accessible form. Micro- or nano-formulated S may undergo accelerated transformation, as the oxidation rate of S indirectly depends on particle size.

View Article and Find Full Text PDF

Determination of plasma uracil was reported as a method for evaluation of Dihydropyrimidine dehydrogenase (DPD) activity that is highly demanded to ensure the safe administration of 5-fluorouracil (5-FU)-based therapies to cancer patients. This work reports the development of a simple electroanalytical method based on adsorptive stripping square wave voltammetry (AdSWV) at mercury film-coated glassy carbon electrode (MF/GCE) for the highly sensitive determination of uracil in biological fluids that can be used for diagnosis of decreased DPD activity. Due to the formation of the Hg-Uracil complex at the electrode surface, the accuracy of the measurement was not affected by the complicated matrices in biological fluids including human serum, plasma, and urine.

View Article and Find Full Text PDF

A substantial development in nanoscale materials possessing catalytic activities comparable with natural enzymes has been accomplished. Their advantages were owing to the excellent sturdiness in an extreme environment, possibilities of their large-scale production resulting in higher profitability, and easy manipulation for modification. Despite these advantages, the main challenge for artificial enzyme mimetics is the lack of substrate selectivity where natural enzymes flourish.

View Article and Find Full Text PDF
Article Synopsis
  • A study focused on the nutritional profiles of microalgae A. maxima and Ch. vulgaris, particularly their vitamin B, amino acids, and micronutrients, under iron-induced conditions.
  • A. maxima showed higher vitamin B content, while Ch. vulgaris had a significantly better absorption capacity for iron and contained more micronutrients.
  • Combining A. maxima and Ch. vulgaris in a 6:1 ratio can help meet the recommended daily allowance for vitamin B and iron, indicating their potential as valuable nutrition sources.
View Article and Find Full Text PDF

Low-cost, rapid, and easy-to-use biosensors for various cancer biomarkers are of utmost importance in detecting cancer biomarkers for early-stage metastasis control and efficient diagnosis. The molecular complexity of cancer biomarkers is overwhelming, thus, the repeatability and reproducibility of measurements by biosensors are critical factors. Electrochemical biosensors are attractive alternatives in cancer diagnosis due to their low cost, simple operation, and promising analytical figures of merit.

View Article and Find Full Text PDF

Objectives: Cisplatin is a widely used anticancer drug for the treatment of many solid cancers. DNA damage is thought to be the key mechanism of cisplatin's anticancer activity. However, cisplatin may also affect cellular metabolism.

View Article and Find Full Text PDF

Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW).

View Article and Find Full Text PDF

Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced.

View Article and Find Full Text PDF

Graphene oxides (GOs) and their reduced forms are often discussed both positively and negatively due to the lack of information about their chemistry and structure. This study utilized GOs with two sheet sizes that were further reduced by two reducing agents (sodium borohydride and hydrazine) to obtain two different degrees of reduction. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy (RA) to understand their chemistry and structure.

View Article and Find Full Text PDF

Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50-80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C.

View Article and Find Full Text PDF

The impact of graphene oxide (GO) nanocarbon on soil properties is mixed, with both negative and positive effects. Although it decreases the viability of some microbes, there are few studies on how its single amendment to soil or in combination with nanosized sulfur benefits soil microorganisms and nutrient transformation. Therefore, an eight-week pot experiment was carried out under controlled conditions (growth chamber with artificial light) in soil seeded with lettuce () and amended with GO or nano-sulfur on their own or their several combinations.

View Article and Find Full Text PDF

Recently, more accessible transcriptomic approaches have provided a new and deeper understanding of environmental toxicity. The present study focuses on the transcriptomic profiles of green microalgae Chlamydomonas reinhardtii exposed to new industrially promising material, TiO nanotubes (NTs), as an example of a widely used one-dimensional nanomaterial. The first algal in vitro assay included 2.

View Article and Find Full Text PDF

Methyl salicylate (MeSal) is an organic compound present in plants during stress events and is therefore a key marker for early plant disease detection. It has usually been detected by conventional methods that require bulky and costly equipment, such as gas chromatography or mass spectrometry. Currently, however, chemical sensors provide an alternative for MeSal monitoring, showing good performance for its determination in the vapour or liquid phase.

View Article and Find Full Text PDF

Electrochemical detection systems that provide either quantitative or sample-to-answer information are promising for various analytical applications in the emerging field of point-of-care testing (POCT). Nevertheless, in mobile POC systems optical detection is currently more preferred compared to electrochemical detection due to the insufficient robustness of electrochemical detection approaches toward "real world" use. Over the last couple of decades, screen-printed electrodes (SPEs) have emerged as a simple and low-cost electrochemical detection platform.

View Article and Find Full Text PDF
Article Synopsis
  • An archaeological dig in Prostějov, Czech Republic, uncovered a potter's workshop containing various color powders likely used for faience and surface decoration.
  • A detailed analysis using advanced techniques like SEM EDX, ICP MS, and Raman spectroscopy was conducted to investigate the chemical makeup of these powders.
  • Results indicated that the pink powder contained iron and the blue powder contained Prussian blue, along with organic materials such as plant resin, beeswax, and fats, suggesting these mixtures were used similarly to oil paints.
View Article and Find Full Text PDF

Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods spherical particles) and aspect ratios (AR, 11.5 22.

View Article and Find Full Text PDF

Magnéli phase titanium suboxides (Magnéli TiO) are promising, novel materials with superior properties compared to TiO, they are substoichiometric titanium oxides with the chemical formula TiO (where n ≥ 1). In this study, for the first time, subchronic effects of dietary intake of Magnéli TiO were evaluated and compared with TiO particles of similar size, in concentrations 0.1% and 0.

View Article and Find Full Text PDF

Recently, the cytotoxic properties of galvanically coupled Ti-Mg particles have been shown in different cells. This cytotoxic effect has been attributed mainly to Mg due to its tendency to undergo activation when coupled with Ti, forming a galvanic cell consisting of an anode (Mg) and a cathode (Ti). However, the role of the Ti cathode has been ignored in explaining the cytotoxic effect of Ti-Mg particles due to its high resistance to corrosion.

View Article and Find Full Text PDF

Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs.

View Article and Find Full Text PDF

Purpose: The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest.

Methods: Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere.

View Article and Find Full Text PDF

The Late Neolithic palafitte site, Ustie na Drim, in the northern part of Lake Ohrid (North Macedonia), excavated in 1962, offered ceramic fragments of large, flat, elongated pans. These artifacts could be dated by relative chronology to roughly around 5200-5000 BC. According to their shape and technological traits, the ceramic pans were probably used for baking.

View Article and Find Full Text PDF

Proteins are generally detected as biomarkers for tracing or determining various disorders in organisms. Biomarker proteins can be tracked in samples with various origins and in different concentrations, revealing whether an organism is in a healthy or unhealthy state. In regard to detection, electrochemical biosensors are a potential fusion of electronics, chemistry, and biology, allowing for fast and early point-of-care detection from a biological sample with the advantages of high sensitivity, simple construction, and easy operation.

View Article and Find Full Text PDF