Publications by authors named "Richard van Logtestijn"

Global warming increases the risk of wildfire and insect outbreaks, potentially reducing the carbon storage function of coarse woody debris (CWD). There is an increasing focus on the interactive effects of wildfire and insect infestation on forest carbon, but the impact of wood-boring beetle tunnels via their effect on the flammability of deadwood remains unexplored. We hypothesized that the presence of beetle holes, at natural densities, can affect its flammability positively through increased surface area and enhanced oxygen availability in the wood.

View Article and Find Full Text PDF

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.

View Article and Find Full Text PDF

A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark).

View Article and Find Full Text PDF

The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect.

View Article and Find Full Text PDF

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e.

View Article and Find Full Text PDF

Human activity and climate change are increasing the spread of species across the planet, threatening biodiversity and ecosystem functions. Invasion engineers, such as birds, facilitate plant growth through manuring of soil, while native vegetation influences plant germination by creating suitable microhabitats which are especially valuable in cold and dry polar regions. Here we tested how penguin-derived nitrogen, several common Antarctic moss species and warming affect seed germination and growth of the non-native grass Agrostis capillaris under laboratory conditions.

View Article and Find Full Text PDF

Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional pre-aged (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source contributions to total inland water carbon fluxes remains unknown. Here we present unique simultaneous radiocarbon age measurements of inland water CO, CH and dissolved and particulate organic carbon in northeast Siberia during summer.

View Article and Find Full Text PDF

Suboptimal environmental conditions are ubiquitous in nature and commonly drive the outcome of biological interactions in community processes. Despite the importance of biological interactions for community processes, knowledge on how species interactions are affected by a limiting resource, for example, low food availability, remains limited. Here, we tested whether variation in food supply causes nonadditive consumption patterns, using the macroinvertebrate community of intertidal sandy beaches as a model system.

View Article and Find Full Text PDF

Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition.

View Article and Find Full Text PDF

Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important.

View Article and Find Full Text PDF

Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior.

View Article and Find Full Text PDF

Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how warming affects carbon release in two different ecosystems: a peatland in Sweden and a tundra in Alaska.
  • They found that warming in summer made the soil release younger carbon because plants were growing more and decomposing faster.
  • Both ecosystems responded similarly to warming, with more overall carbon being released, but didn't lose more old carbon, which is good news for the environment.
View Article and Find Full Text PDF
Article Synopsis
  • Fire is important for the environment and helps plants grow, but it can spread quickly through litter on the ground.
  • Scientists studied different types of gymnosperms (which are a group of plants) to see how their leaf sizes affect how easily litter catches fire.
  • They found that smaller leaves can make a thick layer of litter that doesn't catch fire easily, and this affects how fires spread in forests with these plants.
View Article and Find Full Text PDF

The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation by a legume at varying salinities. We grew Melilotus officinalis in an agricultural field using drip irrigation with water salinity varying in electrical conductivity between 1.

View Article and Find Full Text PDF

Nutrient resorption from senescing photosynthetic organs is a powerful mechanism for conserving nitrogen (N) and phosphorus (P) in infertile environments. Evolution has resulted in enhanced differentiation of conducting tissues to facilitate transport of photosynthate to other plant parts, ultimately leading to phloem. Such tissues may also serve to translocate N and P to other plant parts upon their senescence.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in precipitation due to global climate change are expected to impact vegetation at high latitude sites.
  • The study examined how increased summer precipitation affected two tundra types: Siberian shrub tundra and a Swedish bog over three years.
  • While the Siberian site showed positive growth responses in certain plants with increased precipitation, overall biomass production did not increase at either site, indicating limited short- to medium-term effects on total tundra plant productivity.
View Article and Find Full Text PDF
Article Synopsis
  • Dead wood plays a critical role in carbon storage and provides habitats for various organisms as it decays, necessitating a better understanding of the factors influencing wood decomposition.
  • The LOGLIFE experiment aims to explore how different wood traits and environmental conditions affect the decomposition process and the related diversity of microbial and invertebrate communities.
  • Conducted in two contrasting forest sites in the Netherlands, LOGLIFE will collaborate with other researchers to improve forest management practices for enhanced carbon sequestration and biodiversity conservation.
View Article and Find Full Text PDF

Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.

View Article and Find Full Text PDF

The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown.

View Article and Find Full Text PDF

*Nutrient resorption and leaching resistance, through their roles in reducing nutrient losses, are important determinants of plant nutrient economy. However, the contributions of fine-stem and fine-root resorption, as well as leaf leaching resistance, have largely been overlooked. *We quantified the relative contributions of these processes to nutrient depletion of these organs during their senescence using 40 subarctic vascular species from aquatic, riparian and terrestrial environments.

View Article and Find Full Text PDF

Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling.

View Article and Find Full Text PDF

The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione0mf68bchgllbqoii2s1n4irnde16fhf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once