Publications by authors named "Richard de Goeij-de Haas"

Background: Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease.

Methods: Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples.

View Article and Find Full Text PDF

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited number of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a direct read-out of aberrant signaling and the resultant clinically relevant phenotype. Mass spectrometry (MS)-based proteomics and phosphoproteomics were applied to 42 PDAC tumors.

View Article and Find Full Text PDF
Article Synopsis
  • VRK1 is an important protein in the cell that helps manage various tasks like copying DNA and fixing damaged DNA.
  • When VRK1 levels go down, it changes how other proteins are modified in the nucleus, especially those involved in handling RNA and DNA.
  • If cells are treated with a drug called doxorubicin, which can damage DNA, the absence of VRK1 can lessen the impact of the drug on proteins that help repair DNA.
View Article and Find Full Text PDF

The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC.

View Article and Find Full Text PDF

Proteogenomic analysis is emerging as an advantageous tool to assist personalized therapy decisions in clinical health care and integrates complementary information from the genome, transcriptome, and (phospho)proteome. A prerequisite for such analysis is a workflow for the simultaneous isolation of DNA, RNA, and protein from a single sample that does not compromise the different biological molecules and their examination. Focusing on the phosphoproteomic aspect of this workflow, we here provide detailed information on our protocol, which is based on commonly used acid guanidinium thiocyanate-phenol-chloroform (AGPC) extraction with RNA-Bee.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR inhibitors. Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to investigate the molecular basis of response to EGFR blockade and identify alternative drug targets to overcome resistance.

View Article and Find Full Text PDF

Background: Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases.

View Article and Find Full Text PDF

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer. However, clinical responses to FGFR inhibitors have remained variable, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening and tumour modelling in mice, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation.

View Article and Find Full Text PDF

Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy.

View Article and Find Full Text PDF

Purpose: Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM.

Patients And Methods: Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs).

View Article and Find Full Text PDF

Background: Based on their potential to analyze aberrant cellular signaling in relation to biological function, kinase activity profiling in tumor biopsies by peptide microarrays and mass spectrometry-based phosphoproteomics may guide selection of protein kinase inhibitors in patients with cancer. Variable tissue handling procedures in clinical practice may influence protein phosphorylation status and kinase activity and therewith may hamper biomarker discovery. Here, the effect of cold ischemia time (CIT) on the stability of kinase activity and protein phosphorylation status in fresh-frozen clinical tissue samples was studied using peptide microarrays and mass spectrometry-based phosphoproteomics.

View Article and Find Full Text PDF

Identification of predictive biomarkers for targeted therapies requires information on drug exposure at the target site as well as its effect on the signaling context of a tumor. To obtain more insight in the clinical mechanism of action of protein kinase inhibitors (PKIs), we studied tumor drug concentrations of protein kinase inhibitors (PKIs) and their effect on the tyrosine-(pTyr)-phosphoproteome in patients with advanced cancer. Tumor biopsies were obtained from 31 patients with advanced cancer before and after 2 weeks of treatment with sorafenib (SOR), erlotinib (ERL), dasatinib (DAS), vemurafenib (VEM), sunitinib (SUN) or everolimus (EVE).

View Article and Find Full Text PDF

Spermatogenesis is a complex cell differentiation process that includes marked genetic, cellular, functional and structural changes. It requires tight regulation, because disturbances in any of the spermatogenic processes would lead to fertility deficiencies as well as disorders in offspring. To increase our knowledge of signal transduction during sperm development, we carried out a large-scale identification of the phosphorylation events that occur in the human male gonad.

View Article and Find Full Text PDF

Exosomes are small endosome-derived extracellular vesicles implicated in cell-cell communication and are secreted by living cells when multivesicular bodies (MVBs) fuse with the plasma membrane (PM). Current techniques to study exosome physiology are based on isolation procedures after secretion, precluding direct and dynamic insight into the mechanics of exosome biogenesis and the regulation of their release. In this study, we propose real-time visualization of MVB-PM fusion to overcome these limitations.

View Article and Find Full Text PDF

Unlabelled: Mass spectrometry-based phosphoproteomics of cancer cell and tissue lysates provides insight in aberrantly activated signaling pathways and potential drug targets. For improved understanding of individual patient's tumor biology and to allow selection of tyrosine kinase inhibitors in individual patients, phosphoproteomics of small clinical samples should be feasible and reproducible. We aimed to scale down a pTyr-phosphopeptide enrichment protocol to biopsy-level protein input and assess reproducibility and applicability to tumor needle biopsies.

View Article and Find Full Text PDF