Background: Addiction is characterized by an inability to stop using drugs, despite adverse consequences. One contributing factor to this compulsive drug taking could be the impact of drug use on the ability to extinguish drug seeking after changes in expected outcomes. Here, we compared effects of cocaine, morphine, and heroin self-administration on two forms of extinction learning: standard extinction driven by reward omission and extinction driven by reward overexpectation.
View Article and Find Full Text PDFImagination, defined as the ability to interpret reality in ways that diverge from past experience, is fundamental to adaptive behavior. This can be seen at a simple level in our capacity to predict novel outcomes in new situations. The ability to anticipate outcomes never before received can also influence learning if those imagined outcomes are not received.
View Article and Find Full Text PDFNormal aging is associated with deficits in cognitive flexibility thought to depend on prefrontal regions such as the orbitofrontal cortex (OFC). Here, we used Pavlovian reinforcer devaluation to test whether normal aging might also affect the ability to use outcome expectancies to guide appropriate behavioral responding, which is also known to depend on the OFC. Both young and aged rats were trained to associate a 10-s conditioned stimulus (CS+) with delivery of a sucrose pellet.
View Article and Find Full Text PDFWhile knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent information about the timing of impending rewards, plays a critical role in this timing function.
View Article and Find Full Text PDFAttention or variations in event processing help drive learning. Lesion studies have implicated the central nucleus of the amygdala (CeA) in this process, particularly when expected rewards are omitted. However, lesion studies cannot specify how information processing in CeA supports such learning.
View Article and Find Full Text PDFThe nucleus accumbens (NA) has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10-s CS+ with delivery of three food pellets.
View Article and Find Full Text PDFThe amygdala is critical for associating predictive cues with primary rewarding and aversive outcomes. This is particularly evident in tasks in which information about expected outcomes is required for normal responding. Here we used a pavlovian overexpectation task to test whether outcome signaling by amygdala might also be necessary for changing those representations in the face of unexpected outcomes.
View Article and Find Full Text PDFHumans and other animals change their behavior in response to unexpected outcomes. The orbitofrontal cortex (OFC) is implicated in such adaptive responding, based on evidence from reversal tasks. Yet these tasks confound using information about expected outcomes with learning when those expectations are violated.
View Article and Find Full Text PDF