Publications by authors named "Richard Woychik"

The human brain undergoes rapid development during the first years of life. Beginning in utero, a wide array of biological, social, and environmental factors can have lasting impacts on brain structure and function. To understand how prenatal and early life experiences alter neurodevelopmental trajectories and shape health outcomes, several NIH Institutes, Centers, and Offices collaborated to support and launch the HEALthy Brain and Child Development (HBCD) Study.

View Article and Find Full Text PDF
Article Synopsis
  • PGC1α is a transcriptional coactivator that plays roles in peripheral tissues, but its specific functions in the brain are not well understood, with some unique brain-specific α isoforms identified in mice and humans.
  • Research using genomics data reveals that the SINE fusion transcript (FT) is the main form of α in neurons, and mutating this SINE in mice causes behavioral changes and gene expression alterations in female cerebellum, particularly related to neurotransmission rather than traditional mitochondrial functions.
  • These findings indicate that different α isoforms might have unique roles in brain function, emphasizing the need for more research before considering PGC1α modulation for potential therapies in neurological contexts.
View Article and Find Full Text PDF

Mitochondrial-driven alterations of the epigenome have been reported, but whether they are relevant at the organismal level remains unknown. The viable yellow agouti mouse (A) is a powerful epigenetic biosensor model that reports on the DNA methylation status of the A locus, which is established prior to the three-germ-layer separation, through the coat color of the animals. Here we show that maternal exposure to rotenone, a potent mitochondrial complex I inhibitor, not only changes the DNA methylation status of the A locus in the skin but broadly affects the liver DNA methylome of the offspring.

View Article and Find Full Text PDF

The impact of mitochondrial dysfunction in epigenetics is emerging, but our understanding of this relationship and its effect on gene expression remains incomplete. We previously showed that acute mitochondrial DNA (mtDNA) loss leads to histone hypoacetylation. It remains to be defined if these changes are maintained when mitochondrial dysfunction is chronic and if they alter gene expression.

View Article and Find Full Text PDF

To life scientists, one important feature offered by RNAseq, a next-generation sequencing tool used to estimate changes in gene expression levels, lies in its unprecedented resolution. It can score countable differences in transcript numbers among thousands of genes and between experimental groups, all at once. However, its high cost limits experimental designs to very small sample sizes, usually = 3, which often results in statistically underpowered analysis and poor reproducibility.

View Article and Find Full Text PDF

Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle.

View Article and Find Full Text PDF

Repetitive elements (REs) comprise 40-60% of the mammalian genome and have been shown to epigenetically influence the expression of genes through the formation of fusion transcript (FTs). We previously showed that an intracisternal A particle forms an FT with the agouti gene in mice, causing obesity/type 2 diabetes. To determine the frequency of FTs genome-wide, we developed a TopHat-Fusion-based analytical pipeline to identify FTs with high specificity.

View Article and Find Full Text PDF

Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks.

View Article and Find Full Text PDF

Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in approximately 5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility.

View Article and Find Full Text PDF

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers.

View Article and Find Full Text PDF

Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild-type protein to be produced at abnormally high levels throughout the body.

View Article and Find Full Text PDF

Tg737 mutant mice exhibit pathologic conditions in numerous tissues along with skeletal patterning defects. Herein, we characterize the skeletal pathologic conditions and confirm a role for Tg737 in skeletal patterning through transgenic rescue. Analyses were conducted in both the hypomorphic Tg737(orpk) allele that results in duplication of digit one and in the null Tg737(delta2-3betaGal) allele that is an embryonic lethal mutation exhibiting eight digits per limb.

View Article and Find Full Text PDF

Agouti is a paracrine-acting, transient antagonist of melanocortin 1 receptors that specifies the subapical band of yellow on otherwise black hairs of the wild-type coat. To better understand both agouti structure/function and the germline damage caused by chemicals and radiation, an allelic series of 25 recessive, homozygous-viable agouti mutations generated in specific-locus tests were characterized. Visual inspection of fur, augmented by quantifiable chemical analysis of hair melanins, suggested four phenotypic categories (mild, moderate, umbrous-like, severe) for the 18 hypomorphs and a single category for the 7 amorphs (null).

View Article and Find Full Text PDF