Rapid, specific, and sensitive identification of microbial pathogens is critical to infectious disease diagnosis and surveillance. Classical culture-based methods can be applied to a broad range of pathogens but have long turnaround times. Molecular methods, such as PCR, are time-effective but are not comprehensive and may not detect novel strains.
View Article and Find Full Text PDFChanges in the Earth's climate and weather continue to impact the planet's ecosystems, including the interface of infectious disease agents with their hosts and vectors. Environmental disasters, natural and human-made activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently, changes in habitat, displaced populations, and environmental stresses that affect the survival of species are amplified over time.
View Article and Find Full Text PDFConiothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.
View Article and Find Full Text PDFBloodstream infection is a serious condition associated with significant morbidity and mortality. The outcome of these infections can be positively affected by the early implementation of effective antibiotic therapy based on the identification of the infecting organism and genetic markers associated with antibiotic resistance. In this study, we evaluated the microarray-based Verigene Gram-negative blood culture (BC-GN) assay in the identification of 8 genus or species targets and 6 genetic resistance determinants in positive blood culture broths.
View Article and Find Full Text PDFThe forensic evaluation of viruses presents new challenges to the forensic science community. Although many criminal cases have been adjudicated involving the deliberate transmission of viruses, especially HIV, this review provides a general approach to viral forensics, especially in light of significant biodefense challenges. Newly emerging techniques of nucleic acid sequencing are discussed in a forensic context.
View Article and Find Full Text PDFNipah and Hendra virus are members of a newly identified genus of emerging paramyxoviruses, the henipaviruses. Both viruses have the ability to cause severe pulmonary infection and severe acute encephalitis. Following their discovery in the 1990s, outbreaks caused by these zoonotic paramyxoviruses have been associated with high public health and especially economic threat potential.
View Article and Find Full Text PDFAlphaviruses are responsible for several medically important emerging diseases and are also significant veterinary pathogens. Due to the aerosol infectivity of some alphaviruses and their ability to cause severe, sometimes fatal neurologic diseases, they are also of biodefense importance. This review discusses the ecology, epidemiology and molecular virology of the alphaviruses, then focuses on three of the most important members of the genus: Venezuelan and eastern equine encephalitis and chikungunya viruses, with emphasis on their genetics and emergence mechanisms, and how current knowledge as well as gaps influence our ability to detect and determine the source of both natural outbreaks and potential use for bioterrorism.
View Article and Find Full Text PDFGenomic instability has been implicated as an important component in tumor progression. Evaluation of mutant frequencies (MFs) in tumors of transgenic mice containing nontranscribed marker genes should be useful for quantitating mutation rates in tumors as the physiologically inactive transgene provides neither a positive nor a negative selective pressure on the tumor. We have conducted long-term carcinogenicity studies in lambda/cII transgenic B6C3F1 mice using a variety of genotoxic and nongenotoxic test agents and have evaluated the mutant frequencies in both tumors and normal tissues from these animals.
View Article and Find Full Text PDF