Publications by authors named "Richard Wheatley"

Article Synopsis
  • The study aimed to improve timely stroke detection at Shoalhaven District Memorial Hospital by implementing the BEFAST stroke screening tool in the Emergency Department (ED).
  • After its implementation, triage processes significantly improved, with patients more likely to be prioritized and experience faster CT scan times.
  • Overall, the use of BEFAST led to better patient outcomes, including shorter hospital stays, more patients returning home sooner, and reduced disability levels following strokes.
View Article and Find Full Text PDF

The four-body nonadditive contribution to the energy of four helium atoms is calculated and fitted for all geometries for which the internuclear distances exceed a small minimum value. The interpolation uses an active learning approach based on Gaussian processes. Asymptotic functions are used to calculate the nonadditive energy when the four helium atoms form distinct subclusters.

View Article and Find Full Text PDF

A strategy is presented to implement Gaussian process potentials in molecular simulations through parallel programming. Attention is focused on the three-body nonadditive energy, though all algorithms extend straightforwardly to the additive energy. The method to distribute pairs and triplets between processes is general to all potentials.

View Article and Find Full Text PDF

Hypothesis: Ice accretion on component surfaces often causes severe impacts or accidents. Liquid-infused surfaces (LIS) have drawn much attention as icephobic materials for ice mitigation in recent years due to their outstanding icephobicity. However, the durability of LIS constructions remains a big challenge, including mechanical vulnerability and rapid depletion of lubricants.

View Article and Find Full Text PDF

Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP).

View Article and Find Full Text PDF

A strategy is outlined to reduce the number of training points required to model intermolecular potentials using Gaussian processes, without reducing accuracy. An asymptotic function is used at a long range, and the crossover distance between this model and the Gaussian process is learnt from the training data. The results are presented for different implementations of this procedure, known as boundary optimization, across the following dimer systems: CO-Ne, HF-Ne, HF-Na, CO-Ne, and (CO).

View Article and Find Full Text PDF

We present a concise, general, and efficient procedure for calculating the cluster integrals that relate thermodynamic virial coefficients to molecular interactions. The approach encompasses nonpairwise intermolecular potentials generated from quantum chemistry or other sources; a simple extension permits efficient evaluation of temperature and other derivatives of the virial coefficients. We demonstrate with a polarizable model of water.

View Article and Find Full Text PDF

Three active learning schemes are used to generate training data for Gaussian process interpolation of intermolecular potential energy surfaces. These schemes aim to achieve the lowest predictive error using the fewest points and therefore act as an alternative to the status quo methods involving grid-based sampling or space-filling designs like Latin hypercubes (LHC). Results are presented for three molecular systems: CO-Ne, CO-H, and Ar.

View Article and Find Full Text PDF

Multi-layered carbon nanomaterials can have an important role in modern nanotechnology. Raman spectroscopy is a widely used analytical technique that is used to characterise the structure of these materials. In this work, an approach based upon an empirical potential for the simulation of the Raman spectroscopy of carbon nanomaterials [P.

View Article and Find Full Text PDF

A procedure is proposed to produce intermolecular potential energy surfaces from limited data. The procedure involves generation of geometrical configurations using a Latin hypercube design, with a maximin criterion, based on inverse internuclear distances. Gaussian processes are used to interpolate the data, using over-specified inverse molecular distances as covariates, greatly improving the interpolation.

View Article and Find Full Text PDF

Impurities from the CCS chain can greatly influence the physical properties of CO. This has important design, safety and cost implications for the compression, transport and storage of CO. There is an urgent need to understand and predict the properties of impure CO to assist with CCS implementation.

View Article and Find Full Text PDF

A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction ("upward") into subdivisions whose integrated density of states is known. When combined with the density of states computed from the "downward" energy partitioning approach [H.

View Article and Find Full Text PDF

Accurate virial coefficients B_{N}(λ,ɛ) (where ɛ is the well depth) for the three-dimensional square-well and square-step potentials are calculated for orders N=5-9 and well widths λ=1.1-2.0 using a very fast recursive method.

View Article and Find Full Text PDF

Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model.

View Article and Find Full Text PDF

A virial expansion of fluid pressure in powers of the density can be used to calculate a wealth of thermodynamic information, but the Nth virial coefficient, which multiplies the Nth power of the density in the expansion, becomes rapidly more complicated with increasing N. This Letter shows that the Nth virial coefficient can be calculated using a method that scales exponentially with N in computer time and memory. This is orders of magnitude more efficient than any existing method for large N, and the method is simple and general.

View Article and Find Full Text PDF

We propose a new simulation method, which combines a cage model and a density of states partitioning technique, to compute the free energy of an arbitrary solid. The excess free energy is separated into two contributions, noninteracting and interacting. The excess free energy of the noninteracting solid is computed by partitioning its geometrical configuration space with respect to the ideal gas.

View Article and Find Full Text PDF

It is challenging to compute the partition function (Q) for systems with enormous configurational spaces, such as fluids. Recently, we developed a Monte Carlo technique (an energy partitioning method) for computing Q [ J. Chem.

View Article and Find Full Text PDF

Iterated stockholder atoms are produced by dividing molecular electron densities into sums of overlapping, near-spherical atomic densities. It is shown that there exists a good correlation between the overlap of the densities of two atoms and the order of the covalent bond between the atoms (as given by simple valence rules). Furthermore, iterated stockholder atoms minimise a functional of the charge density, and this functional can be expressed as a sum of atomic contributions, which are related to the deviation of the atomic densities from spherical symmetry.

View Article and Find Full Text PDF

The partition function (Q) is a central quantity in statistical mechanics. All the thermodynamic properties can be derived from it. Here we show how the partition function of fluids can be calculated directly from simulations; this allows us to obtain the Helmholtz free energy (F) via F = -k(B)T ln Q.

View Article and Find Full Text PDF

The refrigerant 1-1-1-2-tetrafluoroethane (R134a) is being phased out in Europe from 2011. This requires the adoption of alternatives, and the mixture of R134a with carbon dioxide (CO(2)) is a promising candidate. However, limited experimental data currently stymie evaluation of its performance in industrial applications.

View Article and Find Full Text PDF

A five-dimensional potential energy surface is calculated for the interaction of water and CO(2), using second-order Møller-Plesset perturbation theory and coupled-cluster theory with single, double, and perturbative triple excitations. The correlation energy component of the potential energy surface is corrected for basis set incompleteness. In agreement with previous studies, the most negative interaction energy is calculated for a structure with C(2v) symmetry, where the oxygen atom of water is close to the carbon atom of CO(2).

View Article and Find Full Text PDF

We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction.

View Article and Find Full Text PDF

1-1-1-2-tetrafluoroethane (R134a) is one of the most commonly used refrigerants. Its thermophysical properties are important for evaluating the performance of refrigeration cycles. These can be obtained via computer simulation, with an insight into the microscopic structure of the liquid, which is not accessible to experiment.

View Article and Find Full Text PDF

A seven-dimensional potential energy surface is calculated for the interaction of water and carbon monoxide using second-order Moller-Plesset theory, coupled-cluster theory, and extrapolated intermolecular perturbation theory. The effects of stretching the CO molecule and bending the water molecule are included. The minimum energy structure of the water-CO dimer changes from an H-C hydrogen bond to an H-O hydrogen bond when the CO bond length increases by less than 10 pm from its equilibrium value.

View Article and Find Full Text PDF